When augmented feedback serves to encourage a person to continue striving to achieve a performance goal augmented feedback functions?

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3(2), 111–150. doi:10.1080/00222895.1971.10734898.

    Article  PubMed  Google Scholar 

  • Anderson, D. I., Magill, R. A., Sekiya, H., & Ryan, G. (2005). Support for an explanation of the guidance effect in motor skill learning. Journal of Motor Behavior, 37(3), 231–238. doi:10.3200/JMBR.37.3.231-238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89(2), 244–249. doi:10.1037/h0031163.

    Article  PubMed  Google Scholar 

  • Chadabe, J. (2002). The limitations of mapping as a structural descriptive in electronic instruments. In NIME’02 Proceedings of the 2002 conference on New interfaces for musical expression, May 24-26, Dublin, Ireland (pp. 1–5).

  • Danna, J., Fontaine, M., Paz-Villagrán, V., Gondre, C., Thoret, E., Aramaki, M., & Velay, J. L. (2015). The effect of real-time auditory feedback on learning new characters. Human Movement Science, 43, 216–228. doi:10.1016/j.humov.2014.12.002.

    Article  PubMed  Google Scholar 

  • Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: relations between planning and temporal control. Cognition, 74, 1–32.

    Article  PubMed  Google Scholar 

  • Drost, U. C., Rieger, M., Brass, M., Gunter, T. C., & Prinz, W. (2005). When hearing turns into playing: movement induction by auditory stimuli in pianists. The Quarterly Journal of Experimental Psychology Section A, 58(8), 1376–1389. doi:10.1080/02724980443000610.

    Article  Google Scholar 

  • Dyer, J., Stapleton, P., & Rodger, M. W. (2015). Sonification as concurrent augmented feedback for motor skill learning and the importance of mapping design. The Open Psychology Journal, 8(3), 1–11.

    Google Scholar 

  • Effenberg, A. O. (2005). Movement sonification: effects on perception and action. IEEE Multimedia, 12(2), 53–59. doi:10.1109/MMUL.2005.31.

    Article  Google Scholar 

  • Fitch, W., & Kramer, G. (1994). Sonifying the body electric: superiority of an auditory over a visual display in a complex, multivariate system. In G. Kramer (Ed.), Auditory display: sonification, audification, and auditory interfaces (pp. 307–325). Reading: Addison-Wesley.

    Google Scholar 

  • Flowers, J. H. (2005). Thirteen Years of Reflection on Auditory Graphing: Promises, Pitfalls, and Potential New Directions. In Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6–9.

  • Fowler, C. A., & Turvey, M. T. (1978). Skill Acquisition: An event approach with special reference to searching for the optimum of a function of several variables. In G. E. Stelmach (Ed.), Information Processing in Motor Control and Learning. New York: Academic Press.

  • Franz, E. A., & McCormick, R. (2010). Conceptual unifying constraints override sensorimotor interference during anticipatory control of bimanual actions. Experimental Brain Research, 205(2), 273–282. doi:10.1007/s00221-010-2365-5.

    Article  PubMed  Google Scholar 

  • Franz, E. A., Zelaznik, H. N., Swinnen, S. P., & Walter, C. B. (2001). Spatial conceptual influences on the coordination of bimanual actions: when a dual task becomes a single task. Journal of Motor Behavior, 33(1), 103–112. doi:10.1080/00222890109601906.

    Article  PubMed  Google Scholar 

  • Gaver, W. (1993). What in the world do we hear? An ecological approach to auditory event perception. Ecological Psychology, 5(1), 1–29.

    Article  Google Scholar 

  • Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Giordano, B. L., & McAdams, S. (2006). Material identification of real impact sounds: effects of size variation in steel, glass, wood, and plexiglass plates. The Journal of the Acoustical Society of America, 119(2), 1171–1181.

    Article  PubMed  Google Scholar 

  • Heitger, M. H., Ronsse, R., Dhollander, T., Dupont, P., Caeyenberghs, K., & Swinnen, S. P. (2012). Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis. NeuroImage, 61(3), 633–650. doi:10.1016/j.neuroimage.2012.03.067.

    Article  PubMed  Google Scholar 

  • Hermann, T., Hunt, A., & Neuhoff, J. (Eds.). (2011). The sonification handbook (1st ed.). Berlin: Logos Publishing House.

    Google Scholar 

  • Hirsh, I. J., & Watson, C. S. (1996). Auditory psychophysics and perception. Annual Review of Psychology, 47, 461–484. doi:10.1146/annurev.psych.47.1.461.

    Article  PubMed  Google Scholar 

  • Houben, M. M. J., Kohlrausch, A., & Hermes, D. J. (2004). Perception of the size and speed of rolling balls by sound. Speech Communication, 43(4), 331–345. doi:10.1016/j.specom.2004.03.004.

    Article  Google Scholar 

  • Hove, M. J., & Keller, P. E. (2010). Spatiotemporal Relations and Movement Trajectories in Visuomotor Synchronization. Music Perception, 28(1), 15–26. doi:10.1525/mp.2010.28.1.15.

    Article  Google Scholar 

  • Kelso, J. A. S., Scholz, J. P., & Schoner, G. (1986). Nonequilibrium phase transitions in coordinated biological motion: critical fluctuations. Physics Letters A, 118(6), 279–284.

    Article  Google Scholar 

  • Kennedy, D. M., Boyle, J. B., & Shea, C. H. (2013). The role of auditory and visual models in the production of bimanual tapping patterns. Experimental Brain Research, 224(4), 507–518. doi:10.1007/s00221-012-3326-y.

    Article  PubMed  Google Scholar 

  • Kennedy, D. M., Wang, C., Panzer, S., & Shea, C. H. (2016). Continuous scanning trials: transitioning through the attractor landscape. Neuroscience Letters, 610, 66–72. doi:10.1016/j.neulet.2015.10.073.

    Article  PubMed  Google Scholar 

  • Kleiman-Weiner, M., & Berger, J. (2006). The sound of one arm swinging: A model for multidimensional auditory display of physical motion. In 12th International Conference on Auditory Display (ICAD), London, UK, June 20–23. International Community on Auditory Display.

  • Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science, 297(5582), 846–848.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90° continuous relative phase: difficult or easy! Experimental Brain Research, 193, 129–136.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010). Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Experimental Brain Research, 201(2), 249–259. doi:10.1007/s00221-009-2031-y.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., & Shea, C. H. (2011). The learning of 90° continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination. Acta Psychologica, 136(3), 311–320. doi:10.1016/j.actpsy.2010.12.004.

    Article  PubMed  Google Scholar 

  • Lahav, A., Katz, T., Chess, R., & Saltzman, E. (2013). Improved motor sequence retention by motionless listening. Psychological Research, 77(3), 310–319. doi:10.1007/s00426-012-0433-0.

    Article  PubMed  Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. The Journal of Neuroscience, 27(2), 308–314. doi:10.1523/JNEUROSCI.4822-06.2007.

    Article  PubMed  Google Scholar 

  • Leman, M. (2008). Embodied music cognition and mediation technology. Cambridge: MIT Press.

    Google Scholar 

  • Lotze, M., Scheler, G., Tan, H.-R., Braun, C., & Birbaumer, N. (2003). The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. NeuroImage, 20(3), 1817–1829. doi:10.1016/j.neuroimage.2003.07.018.

    Article  PubMed  Google Scholar 

  • Mechsner, F., Kerzel, D., Knoblich, È., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414, 69–73.

    Article  PubMed  Google Scholar 

  • Medeiros, C. B., & Wanderley, M. M. (2014). A comprehensive review of sensors and instrumentation methods in devices for musical expression. Sensors, 14(8), 13556–13591. doi:10.3390/s140813556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaels, C. F., & Carello, C. (1981). Direct Perception. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Mononen, K., Viitasalo, J. T., Konttinen, N., & Era, P. (2003). The effects of augmented kinematic feedback on motor skill learning in rifle shooting. Journal of Sports Sciences, 21(10), 867–876. doi:10.1080/0264041031000101944.

    Article  PubMed  Google Scholar 

  • Oldfield, R. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Park, J. H., Shea, C. H., & Wright, D. L. (2000). Reduced-frequency concurrent and terminal feedback: a test of the guidance hypothesis. Journal of Motor Behavior, 32(3), 287–296. doi:10.1080/00222890009601379.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (1993). Music as motion: a synopsis of Alexander Truslit’ s (1938) Gestaltung und Bewegung in der Musik. Psychology of Music, 21(1), 48–72. doi:10.1177/030573569302100104.

    Article  Google Scholar 

  • Roddy, S., & Furlong, D. (2014). Embodied aesthetics in auditory display. Organised Sound, 19(01), 70–77. doi:10.1017/S1355771813000423.

    Article  Google Scholar 

  • Ronsse, R., Puttemans, V., Coxon, J. P., Goble, D. J., Wagemans, J., Wenderoth, N., & Swinnen, S. P. (2011). Motor learning with augmented feedback: modality-dependent behavioral and neural consequences. Cerebral Cortex, 21(6), 1283–1294. doi:10.1093/cercor/bhq209.

    Article  PubMed  Google Scholar 

  • Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning : a review and critical reappraisal. Psychological Bulletin, 95(3), 355–386.

    Article  PubMed  Google Scholar 

  • Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: evidence and interpretations. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor neuroscience (pp. 59–75). Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-3626-6.

  • Schmidt, R. A., & Wulf, G. (1997). Continuous concurrent feedback degrades skill learning: implications for training and simulation. Human Factors, 39(4), 509–525.

    Article  PubMed  Google Scholar 

  • Sievers, B., Polansky, L., Casey, M., & Wheatley, T. (2013). Music and movement share a dynamic structure that supports universal expressions of emotion. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 70–75. doi:10.1073/pnas.1209023110.

    Article  PubMed  Google Scholar 

  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013a). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychonomic Bulletin & Review, 20(1), 21–53. doi:10.3758/s13423-012-0333-8.

    Article  Google Scholar 

  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013b). Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task. Journal of Motor Behavior, 45(6), 455–472. doi:10.1080/00222895.2013.826169.

    Article  PubMed  Google Scholar 

  • Soderstrom, N. C., & Bjork, R. A. (2015). Learning versus performance: an integrative review. Perspectives on Psychological Science, 10(2), 176–199. doi:10.1177/1745691615569000.

    Article  PubMed  Google Scholar 

  • Stienstra, J., Overbeeke, K., & Wensveen, S. (2011). Embodying complexity through movement sonification. In Proceedings of the 9th ACM SIGCHI Italian chapter international conference on computer-human interaction: facing complexity (pp. 39–44). New York: ACM Press. doi:10.1145/2037296.2037310.

  • Summers, J. J., Rosenbaum, D. A., Burns, B. D., & Ford, S. K. (1993). Production of polyrhythms. Journal of Experimental Psychology: Human Perception and Performance, 19(2), 416–428.

    PubMed  Google Scholar 

  • Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18–25. doi:10.1016/j.tics.2003.10.017.

    Article  PubMed  Google Scholar 

  • Taylor, J. E. T., & Witt, J. K. (2015). Listening to music primes space: pianists, but not novices, simulate heard actions. Psychological Research, 79(2), 175–182. doi:10.1007/s00426-014-0544-x.

    Article  PubMed  Google Scholar 

  • Tinazzi, M., Fiaschi, A., Frasson, E., Fiorio, M., Cortese, F., & Aglioti, S. M. (2002). Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation. Movement Disorders : Official Journal of the Movement Disorder Society, 17(2), 333–338. doi:10.1002/mds.10019.

    Article  Google Scholar 

  • van Dinther, R., & Patterson, R. D. (2006). Perception of acoustic scale and size in musical instrument sounds. The Journal of the Acoustical Society of America, 120(4), 2158–2176.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Vugt, F. T., & Tillmann, B. (2015). Auditory feedback in error-based learning of motor regularity. Brain Research, 1606, 54–67. doi:10.1016/j.brainres.2015.02.026.

    Article  PubMed  Google Scholar 

  • Vander Linden, D. W., Cauraugh, J. H., & Greene, T. A. (1993). The effect of frequency of kinetic feedback on learning an isometric force production task in nondisabled subjects. Physical Therapy, 73(2), 79–87.

    Article  PubMed  Google Scholar 

  • Vinken, P. M., Kröger, D., Fehse, U., Schmitz, G., Brock, H., & Effenberg, A. O. (2013). Auditory coding of human movement kinematics. Multisensory Research, 26(6), 533–552. doi:10.1163/22134808-00002435.

    Article  PubMed  Google Scholar 

  • Walker, E., & Nowacki, A. S. (2011). Understanding equivalence and noninferiority testing. Journal of General Internal Medicine, 26(2), 192–196. doi:10.1007/s11606-010-1513-8.

    Article  PubMed  Google Scholar 

  • Wang, C., Kennedy, D. M., Boyle, J. B., & Shea, C. H. (2013). A guide to performing difficult bimanual coordination tasks: just follow the yellow brick road. Experimental Brain Research, 230(1), 31–40. doi:10.1007/s00221-013-3628-8.

    Article  PubMed  Google Scholar 

  • Wilson, A. D., Collins, D. R., & Bingham, G. P. (2005). Perceptual coupling in rhythmic movement coordination: stable perception leads to stable action. Experimental Brain Research, 164(4), 517–528. doi:10.1007/s00221-005-2272-3.

    Article  PubMed  Google Scholar 

  • Wilson, A. D., Snapp-Childs, W., Coats, R., & Bingham, G. P. (2010). Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Experimental Brain Research, 205(4), 513–520. doi:10.1007/s00221-010-2388-y.

    Article  PubMed  Google Scholar 

  • Young, W. R., Rodger, M. W., & Craig, C. M. (2013). Perceiving and reenacting spatiotemporal characteristics of walking sounds. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 464–476. doi:10.1037/a0029402.

    PubMed  Google Scholar 


Page 2

Participants traced the index finger of both hands around the shapes simultaneously in an anticlockwise direction, starting from the top corner