Which of the following statements best describes some aspect of the function of a protein that Cotransports glucose and sodium ions into the intestinal cells of an animal?

1. Okada Y (2004) Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem Biophys 41, 233–258. [PubMed] [Google Scholar]

2. Stein WD & Litman T. Cambridge, MA: (2014) Channels, Carriers, and Pumps: An Introduction to Membrane Transport, 2nd edn. Cambridge, MA. [Google Scholar]

3. Yang NJ & Hinner MJ (2015) Getting across the cell membrane: An overview for small molecules, peptides, and proteins. In Site‐Specific Protein Labeling (Gautier A & Hinner MJ, eds), Vol. 1266, pp. 29–53. Humana Press Inc, Berlin. [PMC free article] [PubMed] [Google Scholar]

4. Ruprecht JJ & Kunji ERS (2020) The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem Sci 45, 244–258. [PMC free article] [PubMed] [Google Scholar]

5. Wang W, Gallo L, Jadhav A, Hawkins R & Parker CG (2019) The druggability of solute carriers. J Med Chem 63, 3834–3867. [PubMed] [Google Scholar]

6. Mueckler M & Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34, 121–138. [PMC free article] [PubMed] [Google Scholar]

7. Czuba LC, Hillgren KM & Swaan PW (2018) Post‐translational modifications of transporters. Pharmacol Ther 192, 88–99. [PMC free article] [PubMed] [Google Scholar]

8. Rives ML, Javitch JA & Wickenden AD (2017) Potentiating SLC transporter activity: emerging drug discovery opportunities. Biochem Pharmacol 135, 1–11. [PubMed] [Google Scholar]

9. Hagenbuch B & Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34, 396. [PMC free article] [PubMed] [Google Scholar]

10. Pedersen PL (2005) Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J Bioenerg Biomembr 37, 349–357. [PubMed] [Google Scholar]

11. Hollenstein K, Dawson R & Locher K (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17, 412–418. [PubMed] [Google Scholar]

12. Beis K (2015) Structural basis for the mechanism of ABC transporters. Biochem Soc Trans 43, 889–893. [PubMed] [Google Scholar]

13. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE & Gottesman MM (2018) Revisiting the role of ABC transporters in multidrug‐resistant cancer. Nat Rev Cancer 18, 452–464. [PMC free article] [PubMed] [Google Scholar]

14. Liu X (2019) ABC family transporters. In Advances in Experimental Medicine and Biology (Liu X & Pan G, eds), pp. 13–100. Springer, New York. [PubMed] [Google Scholar]

15. Stewart AG, Laming EM, Sobti M & Stock D (2014) Rotary ATPases—dynamic molecular machines. Curr Opin Struct Biol 25, 40–48. [PubMed] [Google Scholar]

16. Palmgren MG & Nissen P (2011) P‐Type ATPases. Annu Rev Biophys 40, 243–266. [PubMed] [Google Scholar]

17. Futai M, Sun‐Wada GH, Wada Y, Matsumoto N & Nakanishi‐Matsui M (2019) Vacuolar‐type ATPase: a proton pump to lysosomal trafficking. Proc Japan Acad Ser B Phys Biol Sci 95, 261–277. [PMC free article] [PubMed] [Google Scholar]

18. Lippe G, Coluccino G, Zancani M, Baratta W & Crusiz P (2019) Mitochondrial F‐ATP synthase and its transition into an energy‐dissipating molecular machine. Oxid Med Cell Longev 2019, 1–10. [PMC free article] [PubMed] [Google Scholar]

19. Roux B (2017) Ion channels and ion selectivity. Essays Biochem 61, 201–209. [PMC free article] [PubMed] [Google Scholar]

20. Bates E (2015) Ion channels in development and cancer. Annu Rev Cell Dev Biol 31, 231–247. [PubMed] [Google Scholar]

21. Alexander S, Mathie A & Peters J (2011) Ion channels. Br J Pharmacol 164, S137–S174. [Google Scholar]

22. Povey S, Lovering R, Bruford E, Wright M, Lush M & Wain H (2001) The HUGO Gene Nomenclature Committee (HGNC). Hum Genet 109, 678–680. [PubMed] [Google Scholar]

23. Hediger MA, Clémençon B, Burrier RE & Bruford EA (2013) The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 34, 95–107. [PMC free article] [PubMed] [Google Scholar]

24. Fredriksson R, Nordström KJV, Stephansson O, Hägglund MG & Schiöth HB (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 582, 3811–3816. [PubMed] [Google Scholar]

25. Höglund PJ, Nordström KJV, Schiöth HB & Fredriksson R (2011) The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol 28, 1531–1541. [PMC free article] [PubMed] [Google Scholar]

26. Saier MH Jr (2000) A functional‐phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64, 354–411. [PMC free article] [PubMed] [Google Scholar]

27. Perland E & Fredriksson R (2017) Classification systems of secondary active transporters. Trends Pharmacol Sci 38, 305–315. [PubMed] [Google Scholar]

28. César‐Razquin A, Snijder B, Frappier‐Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM et al. (2015) A call for systematic research on solute carriers. Cell 162, 478–487. [PubMed] [Google Scholar]

29. Colas C, Ung PMU & Schlessinger A (2016) SLC transporters: structure, function, and drug discovery. Medchemcomm 7, 1069–1081. [PMC free article] [PubMed] [Google Scholar]

30. Rudnick G, Krämer R, Blakely RD, Murphy DL & Verrey F (2014) The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch 466, 25–42. [PMC free article] [PubMed] [Google Scholar]

31. Levin EJ, Quick M & Zhou M (2009) Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462, 757–761. [PMC free article] [PubMed] [Google Scholar]

32. Papadaki GF, Amillis S & Diallinas G (2017) Substrate specificity of the furE transporter is determined by cytoplasmic terminal domain interactions. Genetics 207, 1387–1400. [PMC free article] [PubMed] [Google Scholar]

33. Krypotou E, Evangelidis T, Bobonis J, Pittis AA, Gabaldón T, Scazzocchio C, Mikros E & Diallinas G (2015) Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol Microbiol 96, 927–950. [PubMed] [Google Scholar]

34. Papageorgiou I, Gournas C, Vlanti A, Amillis S, Pantazopoulou A & Diallinas G (2008) Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers. J Mol Biol 382, 1121–1135. [PubMed] [Google Scholar]

35. Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH & Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 105, 10338–10343. [PMC free article] [PubMed] [Google Scholar]

36. Bai X, Moraes TF & Reithmeier RAF (2017) Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol 34, 1–32. [PubMed] [Google Scholar]

37. Bateman A (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47, D506–D515. [PMC free article] [PubMed] [Google Scholar]

38. Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42, 51–72. [PubMed] [Google Scholar]

39. Garibsingh R‐AA & Schlessinger A (2019) Advances and challenges in rational drug design for SLCs. Trends Pharmacol Sci 40, 790–800. [PMC free article] [PubMed] [Google Scholar]

40. Drew D & Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85, 543–572. [PubMed] [Google Scholar]

41. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M & Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125. [PubMed] [Google Scholar]

42. Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S et al. (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526, 391–396. [PubMed] [Google Scholar]

43. Arakawa T, Kobayashi‐Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda‐Suno C, Kuma H et al. (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350, 680–684. [PubMed] [Google Scholar]

44. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho C‐M, Sali A, Westhoff CM & Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA 107, 9638–9643. [PMC free article] [PubMed] [Google Scholar]

45. Coleman JA, Yang D, Zhao Z, Wen PC, Yoshioka C, Tajkhorshid E & Gouaux E (2019) Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145. [PMC free article] [PubMed] [Google Scholar]

46. Coleman JA, Green EM & Gouaux E (2016) X‐ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339. [PMC free article] [PubMed] [Google Scholar]

47. Schwede T, Sali A, Honig B, Levitt M, Berman HM, Jones D, Brenner SE, Burley SK, Das R, Dokholyan NV et al. (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure 17, 151–159. [PMC free article] [PubMed] [Google Scholar]

48. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM & Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814. [PMC free article] [PubMed] [Google Scholar]

49. Krishnamurthy H & Gouaux E (2012) X‐ray structures of LeuT in substrate‐free outward‐open and apo inward‐open states. Nature 481, 469–474. [PMC free article] [PubMed] [Google Scholar]

50. Joseph D, Pidathala S, Mallela AK & Penmatsa A (2019) Structure and gating dynamics of Na+/Cl– coupled neurotransmitter transporters. Front Mol Biosci 6, 80. [PMC free article] [PubMed] [Google Scholar]

51. Mikros E & Diallinas G (2019) Tales of tails in transporters. Open Biol 9, 190083. [PMC free article] [PubMed] [Google Scholar]

52. Seo YA, Kumara R, Wetli H & Marianne WR (2016) Regulation of divalent metal transporter‐1 by serine phosphorylation. Biochem J 473, 4243–4254. [PMC free article] [PubMed] [Google Scholar]

53. Sprowl JA, Ong SS, Gibson AA, Hu S, Du G, Lin W, Li L, Bharill S, Ness RA, Stecula A et al. (2016) A phosphotyrosine switch regulates organic cation transporters. Nat Commun 7, 10880. [PMC free article] [PubMed] [Google Scholar]

54. Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation‐chloride cotransporters. Physiol Rev 85, 423–493. [PubMed] [Google Scholar]

55. Arroyo JP, Kahle KT & Gamba G (2013) The SLC12 family of electroneutral cation‐coupled chloride cotransporters. Mol Aspects Med 34, 288–298. [PubMed] [Google Scholar]

56. MacGurn JA, Hsu P‐C & Emr SD (2012) Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 81, 231–259. [PubMed] [Google Scholar]

57. Lamb CA, McCann RK, Stöckli J, James DE & Bryant NJ (2010) Insulin‐regulated trafficking of GLUT4 requires ubiquitination. Traffic 11, 1445–1454. [PMC free article] [PubMed] [Google Scholar]

58. Camus SM, Camus MD, Figueras‐Novoa C, Boncompain G, Sadacca LA, Esk C, Bigot A, Gould GW, Kioumourtzoglou D, Perez F et al. (2020) CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. J Cell Biol 219, e201812135. [PMC free article] [PubMed] [Google Scholar]

59. Diallinas G (2016) Dissection of transporter function: from genetics to structure. Trends Genet 32, 576–590. [PubMed] [Google Scholar]

60. Yanatori I, Yasui Y, Tabuchi M & Kishi F (2014) Chaperone protein involved in transmembrane transport of iron. Biochem J 462, 25–37. [PubMed] [Google Scholar]

61. Forero‐Quintero LS, Ames S, Schneider HP, Thyssen A, Boone CD, Andring JT, McKenna R, Casey JR, Deitmer JW & Becker HM (2019) Membrane‐anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J Biol Chem 294, 593–607. [PMC free article] [PubMed] [Google Scholar]

62. Ames S, Andring JT, McKenna R & Becker HM (2020) CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene 39, 1710–1723. [PubMed] [Google Scholar]

63. Becker HM, Hirnet D, Fecher‐Trost C, Sültemeyer D & Deitmer JW (2005) Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. J Biol Chem 280, 39882–39889. [PubMed] [Google Scholar]

64. Klier M, Schüler C, Halestrap AP, Sly WS, Deitmer JW & Becker HM (2011) Transport activity of the high‐affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II. J Biol Chem 286, 27781–27791. [PMC free article] [PubMed] [Google Scholar]

65. Gether U, Andersen PH, Larsson OM & Schousboe A (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27, 375–383. [PubMed] [Google Scholar]

66. Nałęcz KA (2017) Solute carriers in the blood‐brain barrier: safety in abundance. Neurochem Res 42, 795–809. [PubMed] [Google Scholar]

67. Hundal HS & Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296, E603–E613. [PMC free article] [PubMed] [Google Scholar]

68. Ahn S‐Y & Nigam SK (2009) Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 76, 481–490. [PMC free article] [PubMed] [Google Scholar]

69. Wu W, Dnyanmote AV & Nigam SK (2011) Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol 79, 795–805. [PMC free article] [PubMed] [Google Scholar]

70. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S et al. (2007) A genome‐wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885. [PubMed] [Google Scholar]

71. Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A et al. (2013) The diabetes‐susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123, 4513–4524. [PMC free article] [PubMed] [Google Scholar]

72. Fukunaka A & Fujitani Y (2018) Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci 19, 476. [PMC free article] [PubMed] [Google Scholar]

73. Collins JF, Bai L & Ghishan FK (2004) The SLC20 family of proteins: dual functions as sodium‐phosphate cotransporters and viral receptors. Pflugers Arch Eur J Physiol 447, 647–652. [PubMed] [Google Scholar]

74. Nguyen NNT, Lim Y‐S, Nguyen LP, Tran SC, Luong TTD, Nguyen TTT, Pham HT, Mai HN, Choi J‐W, Han S‐S et al. (2018) Hepatitis C virus modulates solute carrier family 3 member 2 for viral propagation. Sci Rep 8, 15486. [PMC free article] [PubMed] [Google Scholar]

75. Bai L, Sato H, Kubo Y, Wada S & Aida Y (2019) CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. FASEB J 33, 14516–14527. [PMC free article] [PubMed] [Google Scholar]

76. Colon‐Moran W, Argaw T & Wilson CA (2017) Three cysteine residues of SLC52A1, a receptor for the porcine endogenous retrovirus‐A (PERV‐A), play a critical role in cell surface expression and infectivity. Virology 507, 140–150. [PubMed] [Google Scholar]

77. Scalise M, Pochini L, Console L, Losso MA & Indiveri C (2018) The human SLC1A5 (ASCT2) amino acid transporter: from function to structure and role in cell biology. Front Cell Dev Biol 6, 96. [PMC free article] [PubMed] [Google Scholar]

78. Lin L, Yee SW, Kim RB & Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14, 543–560. [PMC free article] [PubMed] [Google Scholar]

79. El‐Gebali S, Bentz S, Hediger MA & Anderle P (2013) Solute carriers (SLCs) in cancer. Mol Aspects Med 34, 719–734. [PubMed] [Google Scholar]

80. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF & Hamosh A (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43, D789–D798. [PMC free article] [PubMed] [Google Scholar]

81. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B et al. (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter‐3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet 83, 278–292. [PMC free article] [PubMed] [Google Scholar]

82. Kosugi S, Okamoto H, Tamada A & Sanchez‐Franco F (2002) A novel peculiar mutation in the sodium/iodide symporter gene in Spanish siblings with iodide transport defect. J Clin Endocrinol Metab 87, 3830–3836. [PubMed] [Google Scholar]

83. Flatt JF, Guizouarn H, Burton NM, Borgese F, Tomlinson RJ, Forsyth RJ, Baldwin SA, Levinson BE, Quittet P, Aguilar‐Martinez P et al. (2011) Stomatin‐deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood 118, 5267–5277. [PubMed] [Google Scholar]

84. Falk MJ, Li D, Gai X, McCormick E, Place E, Lasorsa FM, Otieno FG, Hou C, Kim CE, Abdel‐Magid N et al. (2014) AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N‐acetylaspartate. In JIMD Reports (Morava E, ed), pp. 77–85. Wiley, Hoboken, NJ. [PMC free article] [PubMed] [Google Scholar]

85. SIGMA Type 2 Diabetes Consortium , Williams AL, Jacobs SBR, Moreno‐Macías H, Huerta‐Chagoya A, Churchhouse C, Márquez‐Luna C, García‐Ortíz H, Gómez‐Vázquez MJ, Burtt NP, Aguilar‐Salinas CA et al. (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101. [PMC free article] [PubMed] [Google Scholar]

86. Zhao Y, Feng Z, Zhang Y, Sun Y, Chen Y, Liu X, Li S, Zhou T, Chen L, Wei Y et al. (2019) Gain‐of‐function mutations of SLC16A11 contribute to the pathogenesis of type 2 diabetes. Cell Rep 26, 884–892.e4. [PubMed] [Google Scholar]

87. Center for Drug Evaluation and Research (CDER) (2017) Clinical Drug Interaction Studies — Study Design, Data Analysis, and Clinical Implications Guidance for Industry. Beta.Regulations.Gov. Accessed September 14, 2020. https://beta.regulations.gov/docket/FDA‐2017‐D‐5961

88. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G et al. (2010) Coexistence of passive and carrier‐mediated processes in drug transport. Nat Rev Drug Discov 9, 597–614. [PubMed] [Google Scholar]

89. César‐Razquin A, Girardi E, Yang M, Brehme M, Saez‐Rodriguez J & Superti‐Furga G (2018) In silico prioritization of transporter‐drug relationships from drug sensitivity screens. Front Pharmacol 9, 1011. [PMC free article] [PubMed] [Google Scholar]

90. Nyquist MD, Prasad B & Mostaghel EA (2017) Harnessing solute carrier transporters for precision oncology. Molecules 22, 539. [PMC free article] [PubMed] [Google Scholar]

91. Dobson PD & Kell DB (2008) Carrier‐mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 7, 205–220. [PubMed] [Google Scholar]

92. Rask‐Andersen M, Masuram S, Fredriksson R & Schiöth HB (2013) Solute carriers as drug targets: current use, clinical trials and prospective. Mol Aspects Med 34, 702–710. [PubMed] [Google Scholar]

93. Uldry M & Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch Eur J Physiol 447, 480–489. [PubMed] [Google Scholar]

94. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE & Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229, 941–945. [PubMed] [Google Scholar]

95. Preitner F, Bonny O, Laverriere A, Rotman S, Firsov D, Da Costa A, Metref S & Thorens B (2009) Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA 106, 15501–15506. [PMC free article] [PubMed] [Google Scholar]

96. Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B & Schaub J (1997) Mutations in GLUT2, the gene for the liver‐type glucose transporter, in patients with Fanconi‐Bickel syndrome. Nat Genet 17, 324–326. [PubMed] [Google Scholar]

97. Gras D, Roze E, Caillet S, Méneret A, Doummar D, Billette de Villemeur T, Vidailhet M & Mochel F (2014) GLUT1 deficiency syndrome: An update. Rev Neurol 170, 91–99. [PubMed] [Google Scholar]

98. Carruthers A, DeZutter J, Ganguly A & Devaskar SU (2009) Will the original glucose transporter isoform please stand up! Am J Physiol Metab 297, E836–E848. [PMC free article] [PubMed] [Google Scholar]

99. Zambrano A, Molt M, Uribe E & Salas M (2019) Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int J Mol Sci 20, 3374. [PMC free article] [PubMed] [Google Scholar]

100. Younes M, Lechago LV, Somoano JR, Mosharaf M & Lechago J (1996) Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56, 1164–1167. [PubMed] [Google Scholar]

101. Thorens B (2015) GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58, 221–232. [PubMed] [Google Scholar]

102. Burcelin R, Dolci W & Thorens B (2000) Glucose sensing by the hepatoportal sensor is GLUT2‐dependent: in vivo analysis in GLUT2‐null mice. Diabetes 49, 1643–1648. [PubMed] [Google Scholar]

103. Leino RL, Gerhart DZ, Van Bueren AM, McCall AL & Drewes LR (1997) Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res 49, 617–626. [PubMed] [Google Scholar]

104. Maratou E, Dimitriadis G, Kollias A, Boutati E, Lambadiari V, Mitrou P & Raptis SA (2007) Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest 37, 282–290. [PubMed] [Google Scholar]

105. Muretta JM, Romenskaia I & Mastick CC (2008) Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J Biol Chem 283, 311–323. [PubMed] [Google Scholar]

106. Huang S & Czech MP (2007) The GLUT4 Glucose Transporter. Cell Metab 5, 237–252. [PubMed] [Google Scholar]

107. Burant CF (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267, 14523–14526. [PubMed] [Google Scholar]

108. Douard V & Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Metab 295, E227–E237. [PMC free article] [PubMed] [Google Scholar]

109. Wright EM, Loo DDF & Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91, 733–794. [PubMed] [Google Scholar]

110. Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Aspects Med 34, 183–196. [PubMed] [Google Scholar]

111. Diez‐Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM & Koepsell H (2003) A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci USA 100, 11753–11758. [PMC free article] [PubMed] [Google Scholar]

112. Lee WS, Kanai Y, Wells RG & Hediger MA (1994) The high affinity Na+/glucose cotransporter. Re‐evaluation of function and distribution of expression. J Biol Chem 269, 12032–12039. [PubMed] [Google Scholar]

113. Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radović N, Jadrijević S, Aleksic I, Walles T et al. (2015) Localizations of Na+‐d‐glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflügers Arch Eur J Physiol 467, 1881–1898. [PubMed] [Google Scholar]

114. Wiśniewski JR, Friedrich A, Keller T, Mann M & Koepsell H (2015) The impact of high‐fat diet on metabolism and immune defense in small intestine mucosa. J Proteome Res 14, 353–365. [PubMed] [Google Scholar]

115. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H & Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22, 104–112. [PMC free article] [PubMed] [Google Scholar]

116. Solini A, Rossi C, Mazzanti CM, Proietti A, Koepsell H & Ferrannini E (2017) Sodium‐glucose co‐transporter ( SGLT )2 and SGLT1 renal expression in patients with type 2 diabetes. Diabetes Obes Metab 19, 1289–1294. [PubMed] [Google Scholar]

117. Spatola L, Finazzi S, Angelini C, Dauriz M & Badalamenti S (2018) SGLT1 and SGLT1 inhibitors: a role to be assessed in the current clinical practice. Diabetes Ther 9, 427–430. [PMC free article] [PubMed] [Google Scholar]

118. Lee S (2017) Update on SGLT2 inhibitors—new data released at the American Diabetes Association. Crit Pathw Cardiol 16, 93–95. [PubMed] [Google Scholar]

119. Chauvin TR & Griswold MD (2004) Characterization of the expression and regulation of genes necessary for myo‐inositol biosynthesis and transport in the seminiferous epithelium 1. Biol Reprod 70, 744–751. [PubMed] [Google Scholar]

120. Andronic J, Shirakashi R, Pickel SU, Westerling KM, Klein T, Holm T, Sauer M & Sukhorukov VL (2015) Hypotonic activation of the myo‐inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super‐resolution microscopy. PLoS One 10, e0119990. [PMC free article] [PubMed] [Google Scholar]

121. Eskandari S, Loo DDF, Dai G, Levy O, Wright EM & Carrasco N (1997) Thyroid Na + /I − Symporter. J Biol Chem 272, 27230–27238. [PubMed] [Google Scholar]

122. Vayre L, Sabourin J, Caillou B, Ducreux M, Schlumberger M & Bidart J (1999) Immunohistochemical analysis of Na+/I‐ symporter distribution in human extra‐thyroidal tissues. Eur J Endocrinol 141, 382–386. [PubMed] [Google Scholar]

123. Ravera S, Reyna‐Neyra A, Ferrandino G, Amzel LM & Carrasco N (2017) The Sodium/Iodide Symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol 79, 261–289. [PMC free article] [PubMed] [Google Scholar]

124. Warburg O (1956) On the origin of cancer cells. Science 123, 309–314. [PubMed] [Google Scholar]

125. Schwartz L, Supuran C & Alfarouk K (2017) The Warburg effect and the hallmarks of cancer. Anticancer Agents Med Chem 17, 164–170. [PubMed] [Google Scholar]

126. Granja S, Pinheiro C, Reis R, Martinho O & Baltazar F (2015) Glucose addiction in cancer therapy: advances and drawbacks. Curr Drug Metab 16, 221–242. [PubMed] [Google Scholar]

127. Madunić IV, Madunić J, Breljak D, Karaica D & Sabolić I (2018) Sodium‐glucose cotransporters: new targets of cancer therapy? Arh Hig Rada Toksikol 69, 278–285. [PubMed] [Google Scholar]

128. Ancey PB, Contat C & Meylan E (2018) Glucose transporters in cancer – from tumor cells to the tumor microenvironment. FEBS J 285, 2926–2943. [PubMed] [Google Scholar]

129. Koepsell H (2017) The Na+‐D‐glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 170, 148–165. [PubMed] [Google Scholar]

130. Macheda ML, Rogers S & Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202, 654–662. [PubMed] [Google Scholar]

131. Ganapathy V, Thangaraju M & Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121, 29–40. [PubMed] [Google Scholar]

132. Nakaigawa N, Kondo K, Ueno D, Namura K, Makiyama K, Kobayashi K, Shioi K, Ikeda I, Kishida T, Kaneta T et al. (2017) The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer 17, 39. [PMC free article] [PubMed] [Google Scholar]

133. Xu Y‐Y, Wu T‐T, Zhou S‐H, Bao Y‐Y, Wang Q‐Y, Fan J & Huang Y‐P (2014) Apigenin suppresses GLUT‐1 and p‐AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep‐2 cells: an in vitro study. Int J Clin Exp Pathol 7, 3938–3947. [PMC free article] [PubMed] [Google Scholar]

134. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ & Hung MC (2008) Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13, 385–393. [PMC free article] [PubMed] [Google Scholar]

135. Sala‐Rabanal M, Hirayama BA, Ghezzi C, Liu J, Huang SC, Kepe V, Koepsell H, Yu A, Powell DR, Thorens B et al. (2016) Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J Physiol 594, 4425–4438. [PMC free article] [PubMed] [Google Scholar]

136. Wright EM, Ghezzi C & Loo DDF (2017) Novel and unexpected functions of SGLTs. Physiology 32, 435–443. [PMC free article] [PubMed] [Google Scholar]

137. Schiöth HB, Roshanbin S, Hägglund MGA & Fredriksson R (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med 34, 571–585. [PubMed] [Google Scholar]

138. Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M & Hediger MA (2013) The SLC1 high‐affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 34, 108–120. [PubMed] [Google Scholar]

139. Avissar NE, Ryan CK, Ganapathy V & Sax HC (2001) Na + ‐dependent neutral amino acid transporter ATB 0 is a rabbit epithelial cell brush‐border protein. Am J Physiol Physiol 281, C963–C971. [PubMed] [Google Scholar]

140. Grewer C, Gameiro A & Rauen T (2014) SLC1 glutamate transporters. Pflugers Arch 466, 3–24. [PMC free article] [PubMed] [Google Scholar]

141. Chi‐Castañeda D, Suárez‐Pozos E & Ortega A (2017) Regulation of glutamate transporter expression in glial cells. Adv Neurobiol 16, 199–224. [PubMed] [Google Scholar]

142. Kanai Y, Smith CP & Hediger MA (1993) A new family of neurotransmitter transporters: the high‐affinity glutamate transporters. FASEB J 7, 1450–1459. [PubMed] [Google Scholar]

143. Fotiadis D, Kanai Y & Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34, 139–158. [PubMed] [Google Scholar]

144. Taylor PM (2014) Role of amino acid transporters in amino acid sensing. Am J Clin Nutr 99, 223S–230S. [PMC free article] [PubMed] [Google Scholar]

145. Devés R & Boyd CAR (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78, 487–545. [PubMed] [Google Scholar]

146. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H & Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch Eur J Physiol 447, 532–542. [PubMed] [Google Scholar]

147. Chillarón J, Estévez R, Mora C, Wagner CA, Suessbrich H, Lang F, Gelpí JL, Testar X, Busch AE, Zorzano A et al. (1996) Obligatory amino acid exchange via systems b(o,+)‐like and y+L‐like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem 271, 17761–17770. [PubMed] [Google Scholar]

148. Palacín M & Kanai Y (2004) The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch Eur J Physiol 447, 490–494. [PubMed] [Google Scholar]

149. Wagner CA, Lang F & Bröer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Physiol 281, C1077–C1093. [PubMed] [Google Scholar]

150. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB & Verrey F (1998) Amino‐acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395, 288–291. [PubMed] [Google Scholar]

151. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H & Kanai Y (1999) Identification and functional characterization of a Na + ‐independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274, 19745–19751. [PubMed] [Google Scholar]

152. Scalise M, Galluccio M, Console L, Pochini L & Indiveri C (2018) The Human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem 6, 243. [PMC free article] [PubMed] [Google Scholar]

153. Chien H‐C, Colas C, Finke K, Springer S, Stoner L, Zur AA, Venteicher B, Campbell J, Hall C, Flint A et al. (2018) Reevaluating the substrate specificity of the L‐Type amino acid transporter (LAT1). J Med Chem 61, 7358–7373. [PMC free article] [PubMed] [Google Scholar]

154. Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, Cha SH, Endou H & Kanai Y (2000) Identification and characterization of a Na + ‐independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d‐ and l‐amino acids. J Biol Chem 275, 9690–9698. [PubMed] [Google Scholar]

155. Bröer A, Wagner CA, Lang F & Bröer S (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349(Pt 3), 787–795. [PMC free article] [PubMed] [Google Scholar]

156. Kanai Y, Fukasawa Y, Cha SH, Segawa H, Chairoungdua A, Kim DK, Matsuo H, Kim JY, Miyamoto K, Takeda E et al. (2000) Transport properties of a system y + L neutral and basic amino acid transporter. J Biol Chem 275, 20787–20793. [PubMed] [Google Scholar]

157. Sato H, Tamba M, Ishii T & Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274, 11455–11458. [PubMed] [Google Scholar]

158. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M et al. (2013) The cystine/glutamate antiporter system x(c)(‐) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18, 522–555. [PMC free article] [PubMed] [Google Scholar]

159. Fernández E, Carrascal M, Rousaud F, Abián J, Zorzano A, Palacín M & Chillarón J (2002) rBAT‐b 0,+ AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Physiol 283, F540–F548. [PubMed] [Google Scholar]

160. Nagamori S, Wiriyasermkul P, Guarch ME, Okuyama H, Nakagomi S, Tadagaki K, Nishinaka Y, Bodoy S, Takafuji K, Okuda S et al. (2016) Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria‐related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci USA 113, 775–780. [PMC free article] [PubMed] [Google Scholar]

161. Pramod AB, Foster J, Carvelli L & Henry LK (2013) SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 34, 197–219. [PMC free article] [PubMed] [Google Scholar]

162. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K & Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63, 585–640. [PubMed] [Google Scholar]

163. Jayaraman K, Morley AN, Szöllősi D, Wassenaar TA, Sitte HH & Stockner T (2018) Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. PLoS Comput Biol 14, e1006229. [PMC free article] [PubMed] [Google Scholar]

164. Zhen J & Reith MEA (2018) Functional properties of dopamine transporter oligomers after copper linking. J Neurochem 144, 162–171. [PMC free article] [PubMed] [Google Scholar]

165. Schmitt KC, Rothman RB & Reith MEA (2013) Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther 346, 2–10. [PMC free article] [PubMed] [Google Scholar]

166. Madsen KK, White HS & Schousboe A (2010) Neuronal and non‐neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 125, 394–401. [PubMed] [Google Scholar]

167. Huot P, Fox SH & Brotchie JM (2015) Monoamine reuptake inhibitors in Parkinson’s disease. Parkinsons Dis 2015, 609428. [PMC free article] [PubMed] [Google Scholar]

168. Aggarwal S & Mortensen OV (2017) Overview of monoamine transporters. Curr Protoc Pharmacol 79, 12.16.1–12.16.17. [Google Scholar]

169. Scimemi A (2014) Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8, 161. [PMC free article] [PubMed] [Google Scholar]

170. Zhou Y & Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol (Lausanne) 4, 165. [PMC free article] [PubMed] [Google Scholar]

171. Eskandari S, Willford SL & Anderson CM (2017) Revised ion/substrate coupling stoichiometry of GABA transporters. Adv Neurobiol 16, 85–116. [PubMed] [Google Scholar]

172. Zhou Y, Holmseth S, Guo C, Hassel B, Höfner G, Huitfeldt HS, Wanner KT & Danbolt NC (2012) Deletion of the γ‐aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J Biol Chem 287, 35733–35746. [PMC free article] [PubMed] [Google Scholar]

173. Karunakaran S, Ramachandran S, Coothankandaswamy V, Elangovan S, Babu E, Periyasamy‐Thandavan S, Gurav A, Gnanaprakasam JP, Singh N, Schoenlein PV et al. (2011) SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor‐positive breast cancer. J Biol Chem 286, 31830–31838. [PMC free article] [PubMed] [Google Scholar]

174. Eulenburg V & Gomeza J (2010) Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Res Rev 63, 103–112. [PubMed] [Google Scholar]

175. Shibasaki K, Hosoi N, Kaneko R, Tominaga M & Yamada K (2017) Glycine release from astrocytes via functional reversal of GlyT1. J Neurochem 140, 395–403. [PubMed] [Google Scholar]

176. Crump FT, Fremeau RT & Craig AM (1999) Localization of the brain‐specific high‐affinity l‐proline transporter in cultured hippocampal neurons: molecular heterogeneity of synaptic terminals. Mol Cell Neurosci 13, 25–39. [PubMed] [Google Scholar]

177. Gupta N, Prasad PD, Ghamande S, Moore‐Martin P, Herdman AV, Martindale RG, Podolsky R, Mager S, Ganapathy ME & Ganapathy V (2006) Up‐regulation of the amino acid transporter ATB0,+ (SLC6A14) in carcinoma of the cervix. Gynecol Oncol 100, 8–13. [PubMed] [Google Scholar]

178. Gupta N, Miyauchi S, Martindale RG, Herdman AV, Podolsky R, Miyake K, Mager S, Prasad PD, Ganapathy ME & Ganapathy V (2005) Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim Biophys Acta Mol Basis Dis 1741, 215–223. [PubMed] [Google Scholar]

179. Bröer A, Tietze N, Kowalczuk S, Chubb S, Munzinger M, Bak LK & Bröer S (2006) The orphan transporter v7–3 (slc6a15) is a Na + ‐dependent neutral amino acid transporter (B 0 AT2). Biochem J 393, 421–430. [PMC free article] [PubMed] [Google Scholar]

180. Parra LA, Baust T, El Mestikawy S, Quiroz M, Hoffman B, Haflett JM, Yao JK & Torres GE (2008) The orphan transporter Rxt1/NTT4 (SLC6A17) functions as a synaptic vesicle amino acid transporter selective for proline, glycine, leucine, and alanine. Mol Pharmacol 74, 1521–1532. [PubMed] [Google Scholar]

181. Singer D, Camargo SMR, Huggel K, Romeo E, Danilczyk U, Kuba K, Chesnov S, Caron MG, Penninger JM & Verrey F (2009) Orphan transporter SLC6A18 is renal neutral amino acid transporter B 0 AT3. J Biol Chem 284, 19953–19960. [PMC free article] [PubMed] [Google Scholar]

182. Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88, 249–286. [PubMed] [Google Scholar]

183. Kowalczuk S, Bröer A, Munzinger M, Tietze N, Klingel K & Bröer S (2005) Molecular cloning of the mouse IMINO system: An Na+‐ and Cl –dependent proline transporter. Biochem J 386, 417–422. [PMC free article] [PubMed] [Google Scholar]

184. Verrey F, Singer D, Ramadan T, Vuille‐Dit‐Bille RN, Mariotta L & Camargo SMR (2009) Kidney amino acid transport. Pflugers Arch Eur J Physiol 458, 53–60. [PubMed] [Google Scholar]

185. Fan SJ & Goberdhan DCI (2018) PATs and SNATs: amino acid sensors in disguise. Front Pharmacol 9, 640. [PMC free article] [PubMed] [Google Scholar]

186. Bröer S (2014) The SLC38 family of sodium‐amino acid co‐transporters. Pflugers Arch Eur J Physiol 466, 155–172. [PubMed] [Google Scholar]

187. Mackenzie B & Erickson JD (2004) Sodium‐coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447, 784–95. [PubMed] [Google Scholar]

188. Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM & Hundal HS (2011) SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci (Elite Ed) 3, 1289–1299. [PubMed] [Google Scholar]

189. Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M et al. (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481. [PMC free article] [PubMed] [Google Scholar]

190. Hellsten SV, Hägglund MG, Eriksson MM & Fredriksson R (2017) The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission. FEBS Open Bio 7, 730–746. [PMC free article] [PubMed] [Google Scholar]

191. Bodoy S, Fotiadis D, Stoeger C, Kanai Y & Palacín M (2013) The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol Aspects Med 34, 638–645. [PubMed] [Google Scholar]

192. Bodoy S, Martin L, Zorzano A, Palacin M, Estevez R & Bertran J (2005) Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem 280, 12002–12011. [PubMed] [Google Scholar]

193. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, Jutabha P, Li Y, Ahmed N, Sakamoto S et al. (2003) Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278, 43838–43845. [PubMed] [Google Scholar]

194. Wang Q & Holst J (2015) L‐type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 5, 1281–1294. [PMC free article] [PubMed] [Google Scholar]

195. Fukuhara D, Kanai Y, Chairoungdua A, Babu E, Bessho F, Kawano T, Akimoto Y, Endou H & Yan K (2007) Protein characterization of Na+‐independent system L amino acid transporter 3 in mice. Am J Pathol 170, 888–898. [PMC free article] [PubMed] [Google Scholar]

196. Oparija L, Rajendran A, Poncet N & Verrey F (2019) Anticipation of food intake induces phosphorylation switch to regulate basolateral amino acid transporter LAT4 (SLC43A2) function. J Physiol 597, 521–542. [PMC free article] [PubMed] [Google Scholar]

197. Guetg A, Mariotta L, Bock L, Herzog B, Fingerhut R, Camargo SMR & Verrey F (2015) Essential amino acid transporter Lat4 (Slc43a2) is required for mouse development. J Physiol 593, 1273–1289. [PMC free article] [PubMed] [Google Scholar]

198. Kandasamy P, Gyimesi G, Kanai Y & Hediger MA (2018) Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci 43, 752–789. [PubMed] [Google Scholar]

199. Avruch J, Long X, Ortiz‐Vega S, Rapley J, Papageorgiou A & Dai N (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 296, E592–E602. [PMC free article] [PubMed] [Google Scholar]

200. Cha YJ, Kim ES & Koo JS (2018) Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci 19, 1–17. [PMC free article] [PubMed] [Google Scholar]

201. Bhutia YD & Ganapathy V (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta Mol Cell Res 1863, 2531–2539. [PMC free article] [PubMed] [Google Scholar]

202. Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E, Arigoni M, Macagno M, Barrera G, Pizzimenti S et al. (2016) Immunotargeting of antigen xCT attenuates stem‐like cell behavior and metastatic progression in breast cancer. Cancer Res 76, 62–72. [PubMed] [Google Scholar]

203. Sato R, Nakano T, Hosonaga M, Sampetrean O, Harigai R, Sasaki T, Koya I, Okano H, Kudoh J, Saya H et al. (2017) RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis. Biomed Res Int 2017, 8032910. [PMC free article] [PubMed] [Google Scholar]

204. Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, Lehman ML, Hendy SC, Buchanan G, Nelson CC et al. (2011) Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res 71, 7525–7536. [PubMed] [Google Scholar]

205. Ganapathy V, Smith SB & Prasad PD (2004) SLC19: the folate/thiamine transporter family. Pflugers Arch 447, 641–646. [PubMed] [Google Scholar]

206. Zhao R & Goldman ID (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1‐3 and SLC46A1) and folate receptors. Mol Aspects Med 34, 373–385. [PMC free article] [PubMed] [Google Scholar]

207. Hou Z & Matherly LH (2014) Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. Curr Top Membr 73, 175–204. [PMC free article] [PubMed] [Google Scholar]

208. Said HM (2015) Nutrition for the primary care provider. In World Review of Nutrition and Dietetics (Bier DM, Mann J, Alpers DH, Vorster HE & Gibney MJ, eds), vol. 111, pp. 30–37. [Google Scholar]

209. Ferguson PL & Flintoff WF (1999) Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. J Biol Chem 274, 16269–16278. [PubMed] [Google Scholar]

210. Luteijn RD, Zaver SA, Gowen BG, Wyman SK, Garelis NE, Onia L, McWhirter SM, Katibah GE, Corn JE, Woodward JJ et al. (2019) SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438. [PMC free article] [PubMed] [Google Scholar]

211. Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD, Ganapathy V & Prasad PD (1999) Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 274, 31925–31929. [PubMed] [Google Scholar]

212. Said HM, Balamurugan K, Subramanian VS & Marchant JS (2004) Expression and functional contribution of hTHTR‐2 in thiamin absorption in human intestine. Am J Physiol Liver Physiol 286, G491–G498. [PubMed] [Google Scholar]

213. Zhao R, Min SH, Wang Y, Campanella E, Low PS & Goldman ID (2009) A role for the proton‐coupled folate transporter (PCFT‐SLC46A1) in folate receptor‐mediated endocytosis. J Biol Chem 284, 4267–4274. [PMC free article] [PubMed] [Google Scholar]

214. Urquhart BL, Gregor JC, Chande N, Knauer MJ, Tirona RG & Kim RB (2010) The human proton‐coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am J Physiol Liver Physiol 298, G248–G254. [PubMed] [Google Scholar]

215. May JM (2011) The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 164, 1793–1801. [PMC free article] [PubMed] [Google Scholar]

216. Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R & Hediger MA (2013) The sodium‐dependent ascorbic acid transporter family SLC23. Mol Aspects Med 34, 436–454. [PubMed] [Google Scholar]

217. Savini I, Rossi A, Pierro C, Avigliano L & Catani MV (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34, 347–355. [PubMed] [Google Scholar]

218. Godoy A, Ormazabal V, Moraga‐Cid G, Zúñiga FA, Sotomayor P, Barra V, Vasquez O, Montecinos V, Mardones L, Guzmán C et al. (2007) Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2: activation by sodium and absolute dependence on bivalent cations. J Biol Chem 282, 615–624. [PubMed] [Google Scholar]

219. Ballaz SJ & Rebec GV (2019) Neurobiology of vitamin C: expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 146, 104321. [PubMed] [Google Scholar]

220. Muñoz‐Montesino C, Roa FJ, Peña E, González M, Sotomayor K, Inostroza E, Muñoz CA, González I, Maldonado M, Soliz C et al. (2014) Mitochondrial ascorbic acid transport is mediated by a low‐affinity form of the sodium‐coupled ascorbic acid transporter‐2. Free Radic Biol Med 70, 241–254. [PubMed] [Google Scholar]

221. Fiorani M, Azzolini C, Cerioni L, Scotti M, Guidarelli A, Ciacci C & Cantoni O (2015) The mitochondrial transporter of ascorbic acid functions with high affinity in the presence of low millimolar concentrations of sodium and in the absence of calcium and magnesium. Biochim Biophys Acta Biomembr 1848, 1393–1401. [PubMed] [Google Scholar]

222. Cimmino L, Neel BG & Aifantis I (2018) Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol 28, 698–708. [PMC free article] [PubMed] [Google Scholar]

223. Matherly LH, Hou Z & Deng Y (2007) Human reduced folate carrier: Translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26, 111–128. [PubMed] [Google Scholar]

224. Zastre JA, Sweet RL, Hanberry BS & Ye S (2013) Linking vitamin B1 with cancer cell metabolism. Cancer Metab 1, 16. [PMC free article] [PubMed] [Google Scholar]

225. Pieroth R, Paver S, Day S & Lammersfeld C (2018) Folate and its impact on cancer risk. Curr Nutr Rep 7, 70–84. [PMC free article] [PubMed] [Google Scholar]

226. Camarena V & Wang G (2016) The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 73, 1645–1658. [PMC free article] [PubMed] [Google Scholar]

227. Wohlrab C, Phillips E & Dachs GU (2017) Vitamin c transporters in cancer: Current understanding and gaps in knowledge. Front Oncol 7, 1–6. [PMC free article] [PubMed] [Google Scholar]

228. Kotnik BF, Jazbec J, Grabar PB, Rodriguez‐Antona C & Dolzan V (2017) Association between SLC19A1 gene polymorphism and high dose methotrexate toxicity in childhood acute lymphoblastic leukaemia and non Hodgkin malignant lymphoma: introducing a haplotype based approach. Radiol Oncol 51, 455–462. [PMC free article] [PubMed] [Google Scholar]

229. Zaïr ZM & Singer DRJ (2016) Influx transporter variants as predictors of cancer chemotherapy‐induced toxicity: systematic review and meta‐analysis. Pharmacogenomics 17, 1189–1205. [PubMed] [Google Scholar]

230. Zhao R, Najmi M, Aluri S, Spray DC & Goldman ID (2018) Concentrative transport of antifolates mediated by the proton‐coupled folate transporter (slc46a1); augmentation by a hepes buffer. Mol Pharmacol 93, 208–215. [PMC free article] [PubMed] [Google Scholar]

231. Cheuk IW, Shin VY, Siu MT, Tsang JY, Ho JC, Chen J, Tse GM, Wang X & Kwong A (2015) Association of EP2 receptor and SLC19A3 in regulating breast cancer metastasis. Am J Cancer Res 5, 3389–3399. [PMC free article] [PubMed] [Google Scholar]

232. Zera K, Sweet R & Zastre J (2016) Role of HIF‐1α in the hypoxia inducible expression of the thiamine transporter, SLC19A3. Gene 595, 212–220. [PMC free article] [PubMed] [Google Scholar]

233. Erichsen HC, Peters U, Eck P, Welch R, Schoen RE, Yeager M, Levine M, Hayes RB & Chanock S (2008) Genetic variation in sodium‐dependent vitamin C transporters SLC23A1 and SLC23A2 and risk of advanced colorectal adenoma. Nutr Cancer 60, 652–659. [PMC free article] [PubMed] [Google Scholar]

234. Duell EJ, Lujan‐Barroso L, Llivina C, Muñoz X, Jenab M, Boutron‐Ruault MC, Clavel‐Chapelon F, Racine A, Boeing H, Buijsse B et al. (2013) Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms, plasma vitamin C levels, and gastric cancer risk in the EPIC cohort. Genes Nutr 8, 549–560. [PMC free article] [PubMed] [Google Scholar]

235. Wright ME, Andreotti G, Lissowska J, Yeager M, Zatonski W, Chanock SJ, Chow WH & Hou L (2009) Genetic variation in sodium‐dependent ascorbic acid transporters and risk of gastric cancer in Poland. Eur J Cancer 45, 1824–1830. [PMC free article] [PubMed] [Google Scholar]

236. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio IIC, Giannopoulou EG, Rago C et al. (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391–1396. [PMC free article] [PubMed] [Google Scholar]

237. Van Der Reest J & Gottlieb E (2016) Anti‐cancer effects of Vitamin C revisited. Cell Res 26, 269–270. [PMC free article] [PubMed] [Google Scholar]

238. Peña E, Roa FJ, Inostroza E, Sotomayor K, González M, Gutierrez‐Castro FA, Maurin M, Sweet K, Labrousse C, Gatica M et al. (2019) Increased expression of mitochondrial sodium‐coupled ascorbic acid transporter‐2 (mitSVCT2) as a central feature in breast cancer. Free Radic Biol Med 135, 283–292. [PubMed] [Google Scholar]

239. Fiorillo M, Tóth F, Sotgia F & Lisanti MP (2019) Doxycycline, Azithromycin and vitamin C (DAV): a potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging (Albany NY) 11, 2202–2216. [PMC free article] [PubMed] [Google Scholar]

240. Lorenzato A, Magrì A, Matafora V, Audrito V, Arcella P, Lazzari L, Montone M, Lamba S, Deaglio S, Siena S et al. (2020) Vitamin C restricts the emergence of acquired resistance to EGFR‐targeted therapies in colorectal cancer. Cancers (Basel) 12, 685. [PMC free article] [PubMed] [Google Scholar]

241. Young JD (2016) The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30‐year collaborative odyssey. Biochem Soc Trans 44, 869–876. [PubMed] [Google Scholar]

242. Pastor‐Anglada M & Pérez‐Torras S (2018) Emerging roles of nucleoside transporters. Front Pharmacol 9, 606. [PMC free article] [PubMed] [Google Scholar]

243. Young JD, Yao SYM, Baldwin JM, Cass CE & Baldwin SA (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 34, 529–547. [PubMed] [Google Scholar]

244. Pastor‐Anglada M, Errasti‐Murugarren E, Aymerich I & Casado FJ (2007) Concentrative nucleoside transporters (CNTs) in epithelia: from absorption to cell signaling. J Physiol Biochem 63, 97–110. [PubMed] [Google Scholar]

245. Pastor‐Anglada M & Pérez‐Torras S (2018) Who is who in adenosine transport. Front Pharmacol 9, 627. [PMC free article] [PubMed] [Google Scholar]

246. Rodraguez‐Mulero S, Errasti‐Murugarren E, Ballaran J, Felipe A, Doucet A, Casado F & Pastor‐Anglada M (2005) Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: Effect of diabetes. Kidney Int 68, 665–672. [PubMed] [Google Scholar]

247. Gray JH, Owen RP & Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch Eur J Physiol 447, 728–734. [PubMed] [Google Scholar]

248. Valdés R, Casado FJ & Pastor‐Anglada M (2002) Cell‐cycle‐dependent regulation of CNT1, a concentrative nucleoside transporter involved in the uptake of cell‐cycle‐dependent nucleoside‐derived anticancer drugs. Biochem Biophys Res Commun 296, 575–579. [PubMed] [Google Scholar]

249. Pastor‐Anglada M, Casado FJ, Valdés R, Mata J, García‐Manteiga J & Molina M (2001) Complex regulation of nucleoside transporter expression in epithelial and immune system cells. Mol Membr Biol 18, 81–85. [PubMed] [Google Scholar]

250. Aymerich I, Foufelle F, Ferré P, Casado FJ & Pastor‐Anglada M (2006) Extracellular adenosine activates AMP‐dependent protein kinase (AMPK). J Cell Sci 119, 1612–1621. [PubMed] [Google Scholar]

251. Fernández‐Veledo S, Huber‐Ruano I, Aymerich I, Duflot S, Casado FJ & Pastor‐Anglada M (2006) Bile acids alter the subcellular localization of CNT2 (concentrative nucleoside cotransporter) and increase CNT2‐related transport activity in liver parenchymal cells. Biochem J 395, 337–344. [PMC free article] [PubMed] [Google Scholar]

252. Smith KM, Slugoski MD, Loewen SK, Ng AML, Yao SYM, Chen X‐Z, Karpinski E, Cass CE, Baldwin SA & Young JD (2005) The broadly selective human Na + /nucleoside cotransporter (hCNT3) exhibits novel cation‐coupled nucleoside transport characteristics. J Biol Chem 280, 25436–25449. [PubMed] [Google Scholar]

253. Boswell‐Casteel RC & Hays FA (2017) Equilibrative nucleoside transporters‐a review. Nucleosides Nucleotides Nucleic Acids 36, 7–30. [PMC free article] [PubMed] [Google Scholar]

254. Nordh S, Ansari D & Andersson R (2014) hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: a systematic review. World J Gastroenterol 20, 8482. [PMC free article] [PubMed] [Google Scholar]

255. Espinoza JA, García P, Bizama C, Leal JL, Riquelme I, Weber H, Macanas P, Aguayo G, Viñuela E, Roa JC et al. (2016) Low expression of equilibrative nucleoside transporter 1 is associated with poor prognosis in chemotherapy‐naïve pT2 gallbladder adenocarcinoma patients. Histopathology 68, 722–728. [PubMed] [Google Scholar]

256. Grañé‐Boladeras N, Spring CM, Hanna WJB, Pastor‐Anglada M & Coe IR (2016) Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cell Mol Life Sci 73, 4559–4575. [PubMed] [Google Scholar]

257. Xia L, Engel K, Zhou M & Wang J (2007) Membrane localization and pH‐dependent transport of a newly cloned organic cation transporter (PMAT) in kidney cells. Am J Physiol Renal Physiol 292, F682–F690. [PMC free article] [PubMed] [Google Scholar]

258. Li H, Smolen GA, Beers LF, Xia L, Gerald W, Wang J, Haber DA & Lee SB (2008) Adenosine transporter ENT4 is a direct target of EWS/WT1 translocation product and is highly expressed in desmoplastic small round cell tumor. PLoS One 3, e2353. [PMC free article] [PubMed] [Google Scholar]

259. Samanta D & Semenza GL (2018) Metabolic adaptation of cancer and immune cells mediated by hypoxia‐inducible factors. Biochim Biophys Acta Rev Cancer 1870, 15–22. [PubMed] [Google Scholar]

260. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schönfeld C, Löffler M, Reyes G, Duszenko M, Karhausen J et al. (2005) HIF‐1‐dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202, 1493–1505. [PMC free article] [PubMed] [Google Scholar]

261. Pérez‐Torras S, Vidal‐Pla A, Cano‐Soldado P, Huber‐Ruano I, Mazo A & Pastor‐Anglada M (2013) Concentrative nucleoside transporter 1 (hCNT1) promotes phenotypic changes relevant to tumor biology in a translocation‐independent manner. Cell Death Dis 4, e648. [PMC free article] [PubMed] [Google Scholar]

262. Bhutia YD, Hung SW, Patel B, Lovin D & Govindarajan R (2011) CNT1 expression influences proliferation and chemosensitivity in drug‐resistant pancreatic cancer cells. Cancer Res 71, 1825–1835. [PMC free article] [PubMed] [Google Scholar]

263. Errasti‐Murugarren E & Pastor‐Anglada M (2010) Drug transporter pharmacogenetics in nucleoside‐based therapies. Pharmacogenomics 11, 809–841. [PubMed] [Google Scholar]

264. Zhang J, Visser F, King KM, Baldwin SA, Young JD & Cass CE (2007) The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 26, 85–110. [PubMed] [Google Scholar]

265. Romero MF, Chen A‐P, Parker MD & Boron WF (2013) The SLC4 family of bicarbonate (HCO₃−) transporters. Mol Aspects Med 34, 159–182. [PMC free article] [PubMed] [Google Scholar]

266. Parker MD & Boron WF (2013) The divergence, actions, roles, and relatives of sodium‐coupled bicarbonate transporters. Physiol Rev 93, 803–959. [PMC free article] [PubMed] [Google Scholar]

267. Christensen HL, Nguyen AT, Pedersen FD & Damkier HH (2013) Na(+) dependent acid‐base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 4, 304. [PMC free article] [PubMed] [Google Scholar]

268. Pushkin A & Kurtz I (2006) SLC4 base (HCO3‐, CO32‐) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Ren Physiol 290, F580–F599. [PubMed] [Google Scholar]

269. Zhu Q, Lee DWK & Casey JR (2003) Novel topology in C‐terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 278, 3112–3120. [PubMed] [Google Scholar]

270. Abuladze N, Azimov R, Newman D, Sassani P, Liu W, Tatishchev S, Pushkin A & Kurtz I (2005) Critical amino acid residues involved in the electrogenic sodium‐bicarbonate cotransporter kNBC1‐mediated transport. J Physiol 565, 717–730. [PMC free article] [PubMed] [Google Scholar]

271. Zhu Q, Kao L, Azimov R, Newman D, Liu W, Pushkin A, Abuladze N & Kurtz I (2010) Topological location and structural importance of the NBCe1‐A residues mutated in proximal renal tubular acidosis. J Biol Chem 285, 13416–13426. [PMC free article] [PubMed] [Google Scholar]

272. Cordat E & Reithmeier RAF (2014) Structure, function, and trafficking of SLC4 and SLC26 anion transporters. Curr Top Membr 73, 1–67. [PubMed] [Google Scholar]

273. Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, Lu G, Hasegawa K, Okumura H, Wang T et al. (2017) Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res 27, 1020–1033. [PMC free article] [PubMed] [Google Scholar]

274. Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, Newman D, Azimov R, Pushkin A, Zhou ZH et al. (2018) CryoEM structure of the human SLC4A4 sodium‐coupled acid‐base transporter NBCe1. Nat Commun 9, 1–9. [PMC free article] [PubMed] [Google Scholar]

275. Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S & Diallinas G (2015) Oligomerization of the UapA purine transporter is critical for ER‐Exit, plasma membrane localization and turnover. J Mol Biol 427, 2679–2696. [PubMed] [Google Scholar]

276. Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Craven G, Iwata S, Armstrong A, Mikros E et al. (2016) Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nat Commun 7, 1–9. [PMC free article] [PubMed] [Google Scholar]

277. Stewart AK, Chernova MN, Shmukler BE, Wilhelm S & Alper SL (2002) Regulation of AE2‐mediated Cl‐ transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2‐terminal cytoplasmic domain. J Gen Physiol 120, 707–722. [PMC free article] [PubMed] [Google Scholar]

278. Sterling D & Casey JR (1999) Transport activity of AE3 chloride/bicarbonate anion‐exchange proteins and their regulation by intracellular pH. Biochem J 344(Pt 1), 221–229. [PMC free article] [PubMed] [Google Scholar]

279. Gildea JJ, Xu P, Carlson JM, Gaglione RT, Bigler Wang D, Kemp BA, Reyes CM, McGrath HE, Carey RM, Jose PA et al. (2015) The sodium‐bicarbonate cotransporter NBCe2 ( slc4a5) expressed in human renal proximal tubules shows increased apical expression under high‐salt conditions. Am J Physiol Integr Comp Physiol 309, R1447–R1459. [PMC free article] [PubMed] [Google Scholar]

280. Choi I, Aalkjaer C, Boulpaep EL & Boron WF (2000) An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405, 571–575. [PubMed] [Google Scholar]

281. Jacobs S, Ruusuvuori E, Sipilä ST, Haapanen A, Damkier HH, Kurth I, Hentschke M, Schweizer M, Rudhard Y, Laatikainen LM et al. (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci USA 105, 311–316. [PMC free article] [PubMed] [Google Scholar]

282. Parker MD, Bouyer P, Daly CM & Boron WF (2008) Cloning and characterization of novel human SLC4A8 gene products encoding Na+‐driven Cl‐/HCO3(‐) exchanger variants NDCBE‐A, ‐C, and ‐D. Physiol Genomics 34, 265–276. [PMC free article] [PubMed] [Google Scholar]

283. Wang Z, Conforti L, Petrovic S, Amlal H, Burnham CE & Soleimani M (2001) Mouse Na+:HCO3‐ cotransporter isoform NBC‐3 (kNBC‐3): Cloning, expression, and renal distribution. Kidney Int 59, 1405–1414. [PubMed] [Google Scholar]

284. Chen L‐M, Kelly ML, Parker MD, Bouyer P, Gill HS, Felie JM, Davis BA & Boron WF (2008) Expression and localization of Na‐driven Cl‐HCO(3)(‐) exchanger (SLC4A8) in rodent CNS. Neuroscience 153, 162–174. [PMC free article] [PubMed] [Google Scholar]

285. Peña‐Münzenmayer G, George AT, Shull GE, Melvin JE & Catalán MA (2016) Ae4 (Slc4a9) is an electroneutral monovalent cation‐dependent Cl − /HCO 3 − exchanger. J Gen Physiol 147, 423–436. [PMC free article] [PubMed] [Google Scholar]

286. Purkerson JM, Heintz EV, Nakamori A & Schwartz GJ (2014) Insights into acidosis‐induced regulation of SLC26A4 (pendrin) and SLC4A9 (AE4) transporters using three‐dimensional morphometric analysis of β‐intercalated cells. Am J Physiol Physiol 307, F601–F611. [PMC free article] [PubMed] [Google Scholar]

287. Zhang W, Ogando DG, Bonanno JA & Obukhov AG (2015) Human SLC4A11 is a novel NH3/H+ co‐transporter. J Biol Chem 290, 16894–16905. [PMC free article] [PubMed] [Google Scholar]

288. Kao L, Azimov R, Shao XM, Frausto RF, Abuladze N, Newman D, Aldave AJ & Kurtz I (2016) Multifunctional ion transport properties of human SLC4A11: comparison of the SLC4A11‐B and SLC4A11‐C variants. Am J Physiol Physiol 311, C820–C830. [PMC free article] [PubMed] [Google Scholar]

289. Donowitz M, Ming Tse C & Fuster D (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Aspects Med 34, 236–251. [PMC free article] [PubMed] [Google Scholar]

290. Pedersen SF & Counillon L (2019) The SLC9A‐C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol Rev 99, 2015–2113. [PubMed] [Google Scholar]

291. Holmes RS & Spradling Reeves KD (2016) Evolution of vertebrate solute carrier family 9B genes and proteins (SLC9B): evidence for a marsupial origin for testis specific SLC9B1 from an ancestral vertebrate SLC9B2 gene. J Phylogenetics Evol Biol 4, 1–16. [PMC free article] [PubMed] [Google Scholar]

292. Xu H, Ghishan FK & Kiela PR (2018) SLC9 gene family: function, expression, and regulation. Compr Physiol 8, 555–583. [PMC free article] [PubMed] [Google Scholar]

293. Donowitz M, Mohan S, Zhu CX, Chen T‐E, Lin R, Cha B, Zachos NC, Murtazina R, Sarker R & Li X (2009) NHE3 regulatory complexes. J Exp Biol 212, 1638–1646. [PMC free article] [PubMed] [Google Scholar]

294. Padan E, Kozachkov L, Herz K & Rimon A (2009) NhaA crystal structure: functional‐structural insights. J Exp Biol 212, 1593–1603. [PubMed] [Google Scholar]

295. Fafournoux P, Noël J & Pouysségur J (1994) Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 269, 2589–2596. [PubMed] [Google Scholar]

296. Hisamitsu T, Ben Ammar Y, Nakamura TY & Wakabayashi S (2006) Dimerization is crucial for the function of the Na+/H + exchanger NHE1. Biochemistry 45, 13346–13355. [PubMed] [Google Scholar]

297. Parker MD, Myers EJ & Schelling JR (2015) Na+‐H+ exchanger‐1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 72, 2061–2074. [PMC free article] [PubMed] [Google Scholar]

298. Baumgartner M, Patel H & Barber DL (2004) Na + /H + exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am J Physiol Physiol 287, C844–C850. [PubMed] [Google Scholar]

299. Szabó EZ, Numata M, Lukashova V, Iannuzzi P & Orlowski J (2005) beta‐Arrestins bind and decrease cell‐surface abundance of the Na+/H+ exchanger NHE5 isoform. Proc Natl Acad Sci USA 102, 2790–2795. [PMC free article] [PubMed] [Google Scholar]

300. Diering GH, Numata Y, Fan S, Church J & Numata M (2013) Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell‐surface targeting and NGF‐induced PI3K signaling. Mol Biol Cell 24, 3435–3448. [PMC free article] [PubMed] [Google Scholar]

301. Diering GH & Numata M (2014) Endosomal pH in neuronal signaling and synaptic transmission: role of Na(+)/H(+) exchanger NHE5. Front Physiol 4, 412. [PMC free article] [PubMed] [Google Scholar]

302. Kondapalli KC, Prasad H & Rao R (2014) An inside job: how endosomal Na+ /H+ exchangers link to autism and neurological disease. Front Cell Neurosci 8, 1–21. [PMC free article] [PubMed] [Google Scholar]

303. Ilie A, Boucher A, Park J, Berghuis AM, McKinney RA & Orlowski J (2020) Assorted dysfunctions of endosomal alkali cation/proton exchanger SLC9A6 variants linked to Christianson syndrome. J Biol Chem 295, 7075–7079. [PMC free article] [PubMed] [Google Scholar]

304. Kondapalli KC, Kallay LM, Muszelik M & Rao R (2012) Unconventional chemiosmotic coupling of NHA2, a mammalian Na +/H+ antiporter, to a plasma membrane H+ gradient. J Biol Chem 287, 36239–36250. [PMC free article] [PubMed] [Google Scholar]

305. Soleimani M (2013) SLC26 Cl‐/HCO3‐ exchangers in the kidney: roles in health and disease. Kidney Int 84, 657–666. [PubMed] [Google Scholar]

306. Alper SL & Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34, 494–515. [PMC free article] [PubMed] [Google Scholar]

307. Ohana E, Yang D, Shcheynikov N & Muallem S (2009) Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol 587, 2179–2185. [PMC free article] [PubMed] [Google Scholar]

308. Chang YN, Jaumann EA, Reichel K, Hartmann J, Oliver D, Hummer G, Joseph B & Geertsma ER (2019) Structural basis for functional interactions in dimers of SLC26 transporters. Nat Commun 10, 2032. [PMC free article] [PubMed] [Google Scholar]

309. Chang Y‐N & Geertsma ER (2017) The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 398, 165–174. [PubMed] [Google Scholar]

310. Seidler U & Nikolovska K (2019) Slc26 family of anion transporters in the gastrointestinal tract: expression, function, regulation, and role in disease. Compr Physiol 9, 839–872. [PubMed] [Google Scholar]

311. Ohana E, Shcheynikov N, Park M & Muallem S (2012) Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SOFormula/OH‐/Cl‐ exchanger regulated by extracellular Cl‐. J Biol Chem 287, 5122–5132. [PMC free article] [PubMed] [Google Scholar]

312. Ding X, Li D, Li M, Wang H, He Q, Wang Y, Yu H, Tian D & Yu Q (2018) SLC26A3 (DRA) prevents TNF‐alpha‐induced barrier dysfunction and dextran sulfate sodium‐induced acute colitis. Lab Investig 98, 462–476. [PubMed] [Google Scholar]

313. Xiao F, Yu Q, Li J, Johansson MEV, Singh AK, Xia W, Riederer B, Engelhardt R, Montrose M, Soleimani M et al. (2014) Slc26a3 deficiency is associated with loss of colonic HCO3‐ secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiol 211, 161–175. [PubMed] [Google Scholar]

314. Ishiguro H (2014) HCO3 ‐ secretion by SLC26A3 and mucosal defence in the colon. Acta Physiol 211, 17–19. [PubMed] [Google Scholar]

315. Cremer J, Arnoldini M & Hwa T (2017) Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc Natl Acad Sci USA 114, 6438–6443. [PMC free article] [PubMed] [Google Scholar]

316. Engevik MA, Hickerson A, Shull GE & Worrell RT (2013) Acidic conditions in the NHE2 −/− mouse intestine result in an altered mucosa‐associated bacterial population with changes in mucus oligosaccharides. Cell Physiol Biochem 32, 111–128. [PubMed] [Google Scholar]

317. Parks SK, Chiche J & Pouysségur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13, 611–623. [PubMed] [Google Scholar]

318. Wike‐Hooley JL, Haveman J & Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2, 343–366. [PubMed] [Google Scholar]

319. Tannock IF & Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49, 4373–4384. [PubMed] [Google Scholar]

320. Boedtkjer E, Bunch L & Pedersen SF (2012) Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences, and implications for cancer therapy. Curr Pharm Des 18, 1345–1371. [PubMed] [Google Scholar]

321. Harguindey S, Orozco JP, Alfarouk KO & Devesa J (2019) Hydrogen ion dynamics of cancer and a new molecular, biochemical and metabolic approach to the etiopathogenesis and treatment of brain malignancies. Int J Mol Sci 20, 1–19. [PMC free article] [PubMed] [Google Scholar]

322. Amith SR & Fliegel L (2013) Regulation of the Na/H exchanger (NHE1) in breast cancer metastasis. Cancer Res 73, 1259–1264. [PubMed] [Google Scholar]

323. Flinck M, Kramer SH, Schnipper J, Andersen AP & Pedersen SF (2018) The acid‐base transport proteins NHE1 and NBCn1 regulate cell cycle progression in human breast cancer cells. Cell Cycle 17, 1056–1067. [PMC free article] [PubMed] [Google Scholar]

324. Boedtkjer E (2019) Na+, HCO3− cotransporter NBCn1 accelerates breast carcinogenesis. Cancer Metastasis Rev 38, 165–178. [PubMed] [Google Scholar]

325. Chapman JM, Knoepp SM, Byeon MK, Henderson KW & Schweinfest CW (2002) The colon anion transporter, down‐regulated in adenoma, induces growth suppression that is abrogated by E1A. Cancer Res 62, 5083–5088. [PubMed] [Google Scholar]

326. Gorbatenko A, Olesen CW, Boedtkjer E & Pedersen SF (2014) Regulation and roles of bicarbonate transporters in cancer. Front Physiol 5, 1–15. [PMC free article] [PubMed] [Google Scholar]

327. Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang Z & Soleimani M (2006) slc26a3 (dra)‐deficient mice display chloride‐losing diarrhea, enhanced colonic proliferation, and distinct up‐regulation of ion transporters in the colon. J Biol Chem 281, 37962–37971. [PubMed] [Google Scholar]

328. Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406, 365–382. [PubMed] [Google Scholar]

329. Monteith GR, Davis FM & Roberts‐Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287, 31666–31673. [PMC free article] [PubMed] [Google Scholar]

330. Khananshvili D (2013) The SLC8 gene family of sodium–calcium exchangers (NCX) – structure, function, and regulation in health and disease. Mol Aspects Med 34, 220–235. [PubMed] [Google Scholar]

331. Besserer GM, Ottolia M, Nicoll DA, Chaptal V, Cascio D, Philipson KD & Abramson J (2007) The second Ca2+‐binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc Natl Acad Sci USA 104, 18467–18472. [PMC free article] [PubMed] [Google Scholar]

332. Hilge M, Aelen J & Vuister GW (2006) Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol Cell 22, 15–25. [PubMed] [Google Scholar]

333. Ren X & Philipson KD (2013) The topology of the cardiac Na+/Ca2+ exchanger, NCX1. J Mol Cell Cardiol 57, 68–71. [PMC free article] [PubMed] [Google Scholar]

334. Brini M & Carafoli E (2011) The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3, a004168. [PMC free article] [PubMed] [Google Scholar]

335. Quednau BD, Nicoll DA & Philipson KD (2004) The sodium/calcium exchanger family‐SLC8. Pflugers Arch 447, 543–548. [PubMed] [Google Scholar]

336. Xu J, Yang Y, Xie R, Liu J, Nie X, An J, Wen G, Liu X, Jin H & Tuo B (2018) The NCX1/TRPC6 complex mediates TGFβ‐driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res 78, 2564–2576. [PubMed] [Google Scholar]

337. Herchuelz A & Pachera N (2018) The Na + /Ca 2+ exchanger and the plasma membrane Ca 2+ ‐ATPase in β‐cell function and diabetes. Neurosci Lett 663, 72–78. [PubMed] [Google Scholar]

338. Hong K‐W, Lim JE, Kim JW, Tabara Y, Ueshima H, Miki T, Matsuda F, Cho YS, Kim Y & Oh B (2014) Identification of three novel genetic variations associated with electrocardiographic traits (QRS duration and PR interval) in East Asians. Hum Mol Genet 23, 6659–6667. [PubMed] [Google Scholar]

339. Kim JW, Hong K‐W, Go MJ, Kim SS, Tabara Y, Kita Y, Tanigawa T, Cho YS, Han B‐G & Oh B (2012) A common variant in SLC8A1 is associated with the duration of the electrocardiographic QT interval. Am J Hum Genet 91, 180–184. [PMC free article] [PubMed] [Google Scholar]

340. Hilgemann DW, Collins A & Matsuoka S (1992) Steady‐state and dynamic properties of cardiac sodium‐calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol 100, 933–961. [PMC free article] [PubMed] [Google Scholar]

341. Boyman L, Hagen BM, Giladi M, Hiller R, Lederer WJ & Khananshvili D (2011) Proton‐sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J Biol Chem 286, 28811–28820. [PMC free article] [PubMed] [Google Scholar]

342. Jalloul AH, Szerencsei RT, Rogasevskaia TP & Schnetkamp PPM (2018) SLC24A family (K+‐dependent Na+‐Ca2+ exchanger, NCKX). In Encyclopedia of Signaling Molecules (Choi S, ed.), pp. 4994–5002. Springer International Publishing, Cham. [Google Scholar]

343. Dong H, Jiang Y, Triggle CR, Li X & Lytton J (2006) Novel role for K+‐dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. Am J Physiol Heart Circ Physiol 291, H1226–H1235. [PubMed] [Google Scholar]

344. Jalloul AH, Szerencsei RT & Schnetkamp PPM (2016) Cation dependencies and turnover rates of the human K+‐dependent Na+‐Ca2+ exchangers NCKX1, NCKX2, NCKX3 and NCKX4. Cell Calcium 59, 1–11. [PubMed] [Google Scholar]

345. Prevarskaya N, Ouadid‐Ahidouch H, Skryma R & Shuba Y (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc B Biol Sci 369, 20130097. [PMC free article] [PubMed] [Google Scholar]

346. Andrikopoulos P, Baba A, Matsuda T, Djamgoz MBA, Yaqoob MM & Eccles SA (2011) Ca 2+ influx through reverse mode Na +/Ca 2+ exchange is critical for vascular endothelial growth factor‐mediated extracellular signal‐regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 286, 37919–37931. [PMC free article] [PubMed] [Google Scholar]

347. Andrikopoulos P, Eccles SA & Yaqoob MM (2017) Coupling between the TRPC3 ion channel and the NCX1 transporter contributed to VEGF‐induced ERK1/2 activation and angiogenesis in human primary endothelial cells. Cell Signal 37, 12–30. [PubMed] [Google Scholar]

348. Qu M, Yu J, Liu H, Ren Y, Ma C, Bu X & Lan Q (2017) The candidate tumor suppressor gene SLC8A2 inhibits invasion, angiogenesis and growth of glioblastoma. Mol Cells 40, 761–772. [PMC free article] [PubMed] [Google Scholar]

349. Muñoz JJ, Drigo SA, Barros‐Filho MC, Marchi FA, Scapulatempo‐Neto C, Pessoa GS, Guimarães GC, Trindade Filho JCS, Lopes A, Arruda MAZ et al. (2015) Down‐regulation of SLC8A1 as a putative apoptosis evasion mechanism by modulation of calcium levels in penile carcinoma. J Urol 194, 245–251. [PubMed] [Google Scholar]

350. Pelzl L, Hosseinzadeh Z, Alzoubi K, Al‐Maghout T, Schmidt S, Stournaras C & Lang F (2015) Impact of Na + /Ca 2+ exchangers on therapy resistance of ovary carcinoma cells. Cell Physiol Biochem 37, 1857–1868. [PubMed] [Google Scholar]

351. Turner KL & Sontheimer H (2014) Cl‐ and K+ channels and their role in primary brain tumour biology. Philos Trans R Soc B Biol Sci 369, 1–9. [PMC free article] [PubMed] [Google Scholar]

352. Gagnon KB & Delpire E (2013) Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. Am J Physiol Cell Physiol 304, C693–C714. [PMC free article] [PubMed] [Google Scholar]

353. Bazúa‐Valenti S, Castañeda‐Bueno M & Gamba G (2016) Physiological role of SLC12 family members in the kidney. Am J Physiol Physiol 311, F131–F144. [PubMed] [Google Scholar]

354. Sun PL, Jin Y, Park SY, Kim H, Park E, Jheon S, Kim K, Lee CT & Chung JH (2016) Expression of Na+‐K+‐2Cl‐ cotransporter isoform 1 (NKCC1) predicts poor prognosis in lung adenocarcinoma and EGFR‐mutated adenocarcinoma patients. QJM 109, 237–244. [PubMed] [Google Scholar]

355. Chen Y‐F, Chou C‐Y, Ellory JC & Shen M‐R (2010) The emerging role of KCl cotransport in tumor biology. Am J Transl Res 2, 345–355. [PMC free article] [PubMed] [Google Scholar]

356. Brown TC, Murtha TD, Rubinstein JC, Korah R & Carling T (2018) SLC12A7 alters adrenocortical carcinoma cell adhesion properties to promote an aggressive invasive behavior. Cell Commun Signal 16, 27. [PMC free article] [PubMed] [Google Scholar]

357. Bergeron MJ, Clémençon B, Hediger MA & Markovich D (2013) SLC13 family of Na+‐coupled di‐ and tri‐carboxylate/sulfate transporters. Mol Aspects Med 34, 299–312. [PubMed] [Google Scholar]

358. Pajor AM (2014) Sodium‐coupled dicarboxylate and citrate transporters from the SLC13 family. Pflügers Arch Eur J Physiol 466, 119–130. [PubMed] [Google Scholar]

359. Markovich D (2014) Na+–sulfate cotransporter SLC13A1. Pflügers Arch Eur J Physiol 466, 131–137. [PubMed] [Google Scholar]

360. Biber J, Custer M, Quabius ES, Murer H, Lötscher M & Kaissling B (1996) Immunolocalization of Na/SO4‐cotransport (NaSi‐1) in rat kidney. Pflügers Arch Eur J Physiol 432, 373–378. [PubMed] [Google Scholar]

361. Markovich D, Regeer RR, Kunzelmann K & Dawson PA (2005) Functional characterization and genomic organization of the human Na+‐sulfate cotransporter hNaS2 gene (SLC13A4). Biochem Biophys Res Commun 326, 729–734. [PubMed] [Google Scholar]

362. Colas C, Pajor AM & Schlessinger A (2015) Structure‐based identification of inhibitors for the SLC13 family of Na(+)/dicarboxylate cotransporters. Biochemistry 54, 4900–4908. [PMC free article] [PubMed] [Google Scholar]

363. Lee HW, Handlogten ME, Osis G, Clapp WL, Wakefield DN, Verlander JW & Weiner ID (2017) Expression of sodium‐dependent dicarboxylate transporter 1 (NaDC1/SLC13A2) in normal and neoplastic human kidney. Am J Physiol Ren Physiol 312, F427–F435. [PMC free article] [PubMed] [Google Scholar]

364. Bhutia YD, Kopel JJ, Lawrence JJ, Neugebauer V & Ganapathy V (2017) Plasma membrane Na+‐coupled citrate transporter (SLC13A5) and neonatal epileptic encephalopathy. Molecules 22, 378. [PMC free article] [PubMed] [Google Scholar]

365. Jones R & Morris M (2016) Monocarboxylate transporters: therapeutic targets and prognostic factors in disease. Clin Pharmacol Ther 100, 454–463. [PMC free article] [PubMed] [Google Scholar]

366. Pérez‐Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L & Sonveaux P (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta 1863, 2481–2497. [PMC free article] [PubMed] [Google Scholar]

367. Halestrap AP (2013) The SLC16 gene family – structure, role and regulation in health and disease. Mol Aspects Med 34, 337–349. [PubMed] [Google Scholar]

368. Halestrap AP (2012) The monocarboxylate transporter family—Structure and functional characterization. IUBMB Life 64, 1–9. [PubMed] [Google Scholar]

369. Poole RC & Halestrap AP (1997) Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70‐kDa membrane glycoprotein of the immunoglobulin superfamily. J Biol Chem 272, 14624–14628. [PubMed] [Google Scholar]

370. Muramatsu T (2016) Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem 159, 481–490. [PMC free article] [PubMed] [Google Scholar]

371. Wilson MC, Meredith D, Fox JEM, Manoharan C, Davies AJ & Halestrap AP (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4. J Biol Chem 280, 27213–27221. [PubMed] [Google Scholar]

372. Park SJ, Smith CP, Wilbur RR, Cain CP, Kallu SR, Valasapalli S, Sahoo A, Guda MR, Tsung AJ & Velpula KK (2018) An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications. Am J Cancer Res 8, 1967–1976. [PMC free article] [PubMed] [Google Scholar]

373. Marchiq I & Pouysségur J (2016) Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H+ symporters. J Mol Med 94, 155–171. [PMC free article] [PubMed] [Google Scholar]

374. Garcia CK, Brown MS, Pathak RK & Goldstein JL (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 270, 1843–1849. [PubMed] [Google Scholar]

375. Bröer S, Bröer A, Schneider H‐P, Stegen C, Halestrap AP & Deitmer JW (1999) Characterization of the high‐affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 341, 529. [PMC free article] [PubMed] [Google Scholar]

376. Daniele LL, Sauer B, Gallagher SM, Pugh EN, Philp NJ & Philp NJ (2008) Altered visual function in monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol 295, C451–C457. [PMC free article] [PubMed] [Google Scholar]

377. Philp NJ, Yoon H & Lombardi L (2001) Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am J Physiol Physiol 280, C1319–C1326. [PubMed] [Google Scholar]

378. Dong H & Wade MG (2017) Application of a nonradioactive assay for high throughput screening for inhibition of thyroid hormone uptake via the transmembrane transporter MCT8. Toxicol Vitr 40, 234–242. [PubMed] [Google Scholar]

379. Johannes J, Braun D, Kinne A, Rathmann D, Köhrle J & Schweizer U (2016) Few amino acid exchanges expand the substrate spectrum of monocarboxylate transporter 10. Mol Endocrinol 30, 796–808. [PMC free article] [PubMed] [Google Scholar]

380. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH & Endou H (2001) Expression cloning of a Na + ‐independent aromatic amino acid transporter with structural similarity to H + /monocarboxylate transporters. J Biol Chem 276, 17221–17228. [PubMed] [Google Scholar]

381. Ramadan T, Camargo SMR, Summa V, Hunziker P, Chesnov S, Pos KM & Verrey F (2006) Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. J Cell Physiol 206, 771–779. [PubMed] [Google Scholar]

382. Yan L, Zucker S & Toole BP (2005) Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 93, 199–204. [PubMed] [Google Scholar]

383. Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF et al. (2008) Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118, 3930–3942. [PMC free article] [PubMed] [Google Scholar]

384. Pinheiro C, Longatto‐Filho A, Azevedo‐Silva J, Casal M, Schmitt FC & Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44, 127–139. [PubMed] [Google Scholar]

385. Valença I, Pértega‐Gomes N, Vizcaino JR, Henrique RM, Lopes C, Baltazar F & Ribeiro D (2015) Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer. J Cell Mol Med 19, 723–733. [PMC free article] [PubMed] [Google Scholar]

386. Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, Boon R, Escalona‐Noguero C, Torrekens S, Verfaillie C et al. (2019) Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121. [PMC free article] [PubMed] [Google Scholar]

387. Lacerda‐Abreu MA, Russo‐Abrahão T, Monteiro RQ, Rumjanek FD & Meyer‐Fernandes JR (2018) Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochim Biophys Acta Rev Cancer 1870, 291–298. [PubMed] [Google Scholar]

388. Forster IC, Hernando N, Biber J & Murer H (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med 34, 386–395. [PubMed] [Google Scholar]

389. Ravera S, Virkki LV, Murer H & Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol 293, C606–C620. [PubMed] [Google Scholar]

390. Salaun C, Rodrigues P & Heard JM (2001) Transmembrane topology of PiT‐2, a phosphate transporter‐retrovirus receptor. J Virol 75, 5584–5592. [PMC free article] [PubMed] [Google Scholar]

391. Couasnay G, Bon N, Devignes CS, Sourice S, Bianchi A, Véziers J, Weiss P, Elefteriou F, Provot S, Guicheux J et al. (2019) PiT1/Slc20a1 is required for endoplasmic reticulum homeostasis, chondrocyte survival, and skeletal development. J Bone Miner Res 34, 387–398. [PubMed] [Google Scholar]

392. Yoshiko Y, Candeliere GA, Maeda N & Aubin JE (2007) Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 27, 4465–4474. [PMC free article] [PubMed] [Google Scholar]

393. Beck‐Cormier S, Lelliott CJ, Logan JG, Lafont DT, Merametdjian L, Leitch VD, Butterfield NC, Protheroe HJ, Croucher PI, Baldock PA et al. (2019) Slc20a2, encoding the phosphate transporter PiT2, is an important genetic determinant of bone quality and strength. J Bone Miner Res 34, 1101–1114. [PMC free article] [PubMed] [Google Scholar]

394. Zoidis E, Ghirlanda‐Keller C, Gosteli‐Peter M, Zapf J & Schmid C (2004) Regulation of phosphate (Pi) transport and NaPi‐III transporter (Pit‐1) mRNA in rat osteoblasts. J Endocrinol 181, 531–540. [PubMed] [Google Scholar]

395. Chien ML, Foster JL, Douglas JL & Garcia JV (1997) The amphotropic murine leukemia virus receptor gene encodes a 71‐kilodalton protein that is induced by phosphate depletion. J Virol 71, 4564–4570. [PMC free article] [PubMed] [Google Scholar]

396. Bon N, Couasnay G, Bourgine A, Sourice S, Beck‐Cormier S, Guicheux J & Beck L (2018) Phosphate (Pi)‐regulated heterodimerization of the high‐affinity sodium‐dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J Biol Chem 293, 2102–2114. [PMC free article] [PubMed] [Google Scholar]

397. Wagner CA, Hernando N, Forster IC & Biber J (2014) The SLC34 family of sodium‐dependent phosphate transporters. Pflügers Arch Eur J Physiol 466, 139–153. [PubMed] [Google Scholar]

398. Forster IC (2019) The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure‐function studies. Pflügers Arch Eur J Physiol 471, 15–42. [PubMed] [Google Scholar]

399. Miyamoto K‐I, Haito‐Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, Kuwahata M, Kido S, Tatsumi S, Kaneko I et al. (2011) Sodium‐dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci 100, 3719–3730. [PubMed] [Google Scholar]

400. Leung J & Crook M (2019) Disorders of phosphate metabolism. J Clin Pathol 72, 741–747. [PubMed] [Google Scholar]

401. Levi M & Gratton E (2019) Visualizing the regulation of SLC34 proteins at the apical membrane. Pflügers Arch Eur J Physiol 471, 533–542. [PMC free article] [PubMed] [Google Scholar]

402. Blaine J, Okamura K, Giral H, Breusegem S, Caldas Y, Millard A, Barry N & Levi M (2009) PTH‐induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am J Physiol Physiol 297, C1339–C1346. [PMC free article] [PubMed] [Google Scholar]

403. Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, Gratton E, Levi M & Blaine J (2011) Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Physiol 301, C850–C861. [PMC free article] [PubMed] [Google Scholar]

404. Marks J (2019) The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis. Pflugers Arch 471, 165–173. [PMC free article] [PubMed] [Google Scholar]

405. Brown RB & Razzaque MS (2018) Phosphate toxicity and tumorigenesis. Biochim Biophys Acta Rev Cancer 1869, 303–309. [PubMed] [Google Scholar]

406. Li J, Dong W, Li Z, Wang H, Gao H & Zhang Y (2019) Impact of SLC20A1 on the Wnt/β‐catenin signaling pathway in somatotroph adenomas. Mol Med Rep 20, 3276–3284. [PMC free article] [PubMed] [Google Scholar]

407. Salaün C, Leroy C, Rousseau A, Boitez V, Beck L & Friedlander G (2010) Identification of a novel transport‐independent function of PiT1/SLC20A1 in the regulation of TNF‐induced apoptosis. J Biol Chem 285, 34408–34418. [PMC free article] [PubMed] [Google Scholar]

408. Beck L, Leroy C, Salaün C, Margall‐Ducos G, Desdouets C & Friedlander G (2009) Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem 284, 31363–31374. [PMC free article] [PubMed] [Google Scholar]

409. Ye W, Chen C, Gao Y, Zheng ZS, Xu Y, Yun M, Weng HW, Xie D, Ye S & Zhang JX (2017) Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c‐Myc expression and transcriptional activity. Cell Death Dis 8, e2581. [PMC free article] [PubMed] [Google Scholar]

410. Bao Z, Chen L & Guo S (2019) Knockdown of SLC34A2 inhibits cell proliferation, metastasis, and elevates chemosensitivity in glioma. J Cell Biochem 120, 10205–10214. [PubMed] [Google Scholar]

411. Wang Y, Yang W, Pu Q, Yang Y, Ye S, Ma Q, Ren J, Cao Z, Zhong G, Zhang X et al. (2015) The effects and mechanisms of SLC34A2 in tumorigenesis and progression of human non‐small cell lung cancer. J Biomed Sci 22, 52. [PMC free article] [PubMed] [Google Scholar]

412. Chen J, Wang P, Cai R, Peng H, Zhang C & Zhang M (2019) SLC34A2 promotes neuroblastoma cell stemness via enhancement of miR‐25/Gsk3β‐mediated activation of Wnt/β‐catenin signaling. FEBS Open Bio 9, 527–537. [PMC free article] [PubMed] [Google Scholar]

413. Shayakul C, Clémençon B & Hediger MA (2013) The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med 34, 313–322. [PubMed] [Google Scholar]

414. Klein JD (2014) Expression of urea transporters and their regulation. Subcell Biochem 73, 79–107. [PubMed] [Google Scholar]

415. Knepper MA & Star RA (1990) The vasopressin‐regulated urea transporter in renal inner medullary collecting duct. Am J Physiol Physiol 259, F393–F401. [PubMed] [Google Scholar]

416. Nigam SK (2018) The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu Rev Pharmacol Toxicol 58, 663–687. [PMC free article] [PubMed] [Google Scholar]

417. Lai RE, Jay CE & Sweet DH (2018) Organic solute carrier 22 (SLC22) family: potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 26, S45–S60. [PMC free article] [PubMed] [Google Scholar]

418. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34, 413–435. [PubMed] [Google Scholar]

419. Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC & Bhatnagar V (2015) Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol 10, 2039–2049. [PMC free article] [PubMed] [Google Scholar]

420. Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK & Nigam SK (2015) Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure‐function implications and analysis of sequence motifs. PLoS One 10, e0140569. [PMC free article] [PubMed] [Google Scholar]

421. Keller T, Egenberger B, Gorboulev V, Bernhard F, Uzelac Z, Gorbunov D, Wirth C, Koppatz S, Dötsch V, Hunte C et al. (2011) The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem 286, 37874–37886. [PMC free article] [PubMed] [Google Scholar]

422. Nigam SK, Bush KT, Martovetsky G, Ahn S‐Y, Liu HC, Richard E, Bhatnagar V & Wu W (2015) The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 95, 83–123. [PMC free article] [PubMed] [Google Scholar]

423. Nigam SK & Bhatnagar V (2018) The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr Opin Nephrol Hypertens 27, 305. [PMC free article] [PubMed] [Google Scholar]

424. Bush KT, Wu W, Lun C & Nigam SK (2017) The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut–liver– kidney axis. J Biol Chem 292, 15789–15803. [PMC free article] [PubMed] [Google Scholar]

425. International Transporter Consortium , Giacomini KM, Huang S‐M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V et al. (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9, 215–236. [PMC free article] [PubMed] [Google Scholar]

426. White DL, Saunders VA, Dang P, Engler J, Zannettino ACW, Cambareri AC, Quinn SR, Manley PW & Hughes TP (2006) OCT‐1‐mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT‐1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108, 697–704. [PubMed] [Google Scholar]

427. Bahn A, Hagos Y, Reuter S, Balen D, Brzica H, Krick W, Burckhardt BC, Sabolić I & Burckhardt G (2008) Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem 283, 16332–16341. [PubMed] [Google Scholar]

428. Schulz C, Fork C, Bauer T, Golz S, Geerts A, Schömig E & Gründemann D (2014) SLC22A13 catalyses unidirectional efflux of aspartate and glutamate at the basolateral membrane of type A intercalated cells in the renal collecting duct. Biochem J 457, 243–251. [PubMed] [Google Scholar]

429. Bennett KM, Liu J, Hoelting C & Stoll J (2011) Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23. Mol Cell Biochem 352, 143–154. [PMC free article] [PubMed] [Google Scholar]

430. Devireddy LR, Gazin C, Zhu X & Green MR (2005) A cell‐surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123, 1293–1305. [PubMed] [Google Scholar]

431. Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee W‐K & Thévenod F (2012) Lipocalin‐2 (24p3/Neutrophil Gelatinase‐associated Lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem 287, 159–169. [PMC free article] [PubMed] [Google Scholar]

432. Koepsell H, Lips K & Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24, 1227–1251. [PubMed] [Google Scholar]

433. Lozano E, Herraez E, Briz O, Robledo VS, Hernandez‐Iglesias J, Gonzalez‐Hernandez A & Marin JJG (2013) Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int 2013, 692071. [PMC free article] [PubMed] [Google Scholar]

434. Kou L, Sun R, Ganapathy V, Yao Q & Chen R (2018) Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets 22, 715–726. [PubMed] [Google Scholar]

435. Pochini L, Galluccio M, Scalise M, Console L & Indiveri C (2019) OCTN: a small transporter subfamily with great relevance to human pathophysiology, drug discovery, and diagnostics. SLAS Discov Adv Life Sci R&D 24, 89–110. [PubMed] [Google Scholar]

436. Wu X, Prasad PD, Leibach FH & Ganapathy V (1998) cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun 246, 589–595. [PubMed] [Google Scholar]

437. Aouida M, Poulin R & Ramotar D (2010) The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin‐A5. J Biol Chem 285, 6275–6284. [PMC free article] [PubMed] [Google Scholar]

438. Okabe M, Unno M, Harigae H, Kaku M, Okitsu Y, Sasaki T, Mizoi T, Shiiba K, Takanaga H, Terasaki T et al. (2005) Characterization of the organic cation transporter SLC22A16: a doxorubicin importer. Biochem Biophys Res Commun 333, 754–762. [PubMed] [Google Scholar]

439. Rafnar T, Vermeulen SH, Sulem P, Thorleifsson G, Aben KK, Witjes JA, Grotenhuis AJ, Verhaegh GW, van de Kaa CAH, Besenbacher S et al. (2011) European genome‐wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene. Hum Mol Genet 20, 4268–4281. [PMC free article] [PubMed] [Google Scholar]

440. Frullanti E, Colombo F, Falvella FS, Galvan A, Noci S, De Cecco L, Incarbone M, Alloisio M, Santambrogio L, Nosotti M et al. (2012) Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue. Int J cancer 131, E643–E648. [PubMed] [Google Scholar]

441. Dong Z, Ran J, Zhou H, Chen J, Lei T, Wang W, Sun Y, Lin G, Bankir L & Yang B (2013) Urea transporter UT‐B deletion induces DNA damage and apoptosis in mouse bladder urothelium. PLoS One 8, e76952. [PMC free article] [PubMed] [Google Scholar]

442. Hou R, Kong X, Yang B, Xie Y & Chen G (2017) SLC14A1: a novel target for human urothelial cancer. Clin Transl Oncol 19, 1438–1446. [PMC free article] [PubMed] [Google Scholar]

443. Mohelnikova‐Duchonova B, Brynychova V, Hlavac V, Kocik M, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Melichar B et al. (2013) The association between the expression of solute carrier transporters and the prognosis of pancreatic cancer. Cancer Chemother Pharmacol 72, 669–682. [PubMed] [Google Scholar]

444. Zhao W, Wang Y & Yue X (2018) SLC22A16 upregulation is an independent unfavorable prognostic indicator in gastric cancer. Futur Oncol 14, 2139–2148. [PubMed] [Google Scholar]

445. Wang X, Liao X, Yang C, Huang K, Yu T, Yu L, Han C, Zhu G, Zeng X, Liu Z et al. (2019) Identification of prognostic biomarkers for patients with hepatocellular carcinoma after hepatectomy. Oncol Rep 41, 1586–1602. [PMC free article] [PubMed] [Google Scholar]

446. Heise M, Lautem A, Knapstein J, Schattenberg JM, Hoppe‐Lotichius M, Foltys D, Weiler N, Zimmermann A, Schad A, Gründemann D et al. (2012) Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer 12, 109. [PMC free article] [PubMed] [Google Scholar]

447. Shibayama Y, Ushinohama K, Ikeda R, Yoshikawa Y, Motoya T, Takeda Y & Yamada K (2006) Effect of methotrexate treatment on expression levels of multidrug resistance protein 2, breast cancer resistance protein and organic anion transporters Oat1, Oat2 and Oat3 in rats. Cancer Sci 97, 1260–1266. [PubMed] [Google Scholar]

448. Sreenivasan Tantuan S & Viljoen CD (2018) Imatinib affects the expression of SLC22A1 in a non‐linear concentration‐dependent manner within 24 hours. Med Sci Monit Basic Res 24, 59–62. [PMC free article] [PubMed] [Google Scholar]

449. Schaeffeler E, Hellerbrand C, Nies AT, Winter S, Kruck S, Hofmann U, van der Kuip H, Zanger UM, Koepsell H & Schwab M (2011) DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med 3, 1–12. [PMC free article] [PubMed] [Google Scholar]

450. Lautem A, Heise M, Gräsel A, Hoppe‐Lotichius M, Weiler N, Foltys D, Knapstein J, Schattenberg JM, Schad A, Zimmermann A et al. (2013) Downregulation of organic cation transporter 1 (SLC22A1) is associated with tumor progression and reduced patient survival in human cholangiocellular carcinoma. Int J Oncol 42, 1297–1304. [PubMed] [Google Scholar]

451. Qu Q, Qu J, Zhan M, Wu LX, Zhang YW, Lou XY, Fu LJ & Zhou HH (2013) Different involvement of promoter methylation in the expression of organic cation/carnitine transporter 2 (OCTN2) in cancer cell lines. PLoS One 8, e76474. [PMC free article] [PubMed] [Google Scholar]

452. Scalise M, Galluccio M, Accardi R, Cornet I, Tommasino M & Indiveri C (2012) Human OCTN2 (SLC22A5) is down‐regulated in virus‐ and nonvirus‐mediated cancer. Cell Biochem Funct 30, 419–425. [PubMed] [Google Scholar]

453. Montalbetti N, Simonin A, Kovacs G & Hediger MA (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med 34, 270–287. [PubMed] [Google Scholar]

454. Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, Searle S, Miller EN, Peacock CS, Mohammed H et al. (2001) SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol 3, 773–784. [PMC free article] [PubMed] [Google Scholar]

455. Yanatori I & Kishi F (2019) DMT1 and iron transport. Free Radic Biol Med 133, 55–63. [PubMed] [Google Scholar]

456. Tabuchi M, Tanaka N, Nishida‐Kitayama J, Ohno H & Kishi F (2002) Alternative splicing regulates the subcellular localization of divalent metal transporter 1 isoforms. Mol Biol Cell 13, 4371–4387. [PMC free article] [PubMed] [Google Scholar]

457. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL & Hediger MA (1997) Cloning and characterization of a mammalian proton‐coupled metal‐ion transporter. Nature 388, 482–488. [PubMed] [Google Scholar]

458. Garrick MD, Singleton ST, Vargas F, Kuo H‐C, Zhao L, Knöpfel M, Davidson T, Costa M, Paradkar P, Roth JA et al. (2006) DMT1: which metals does it transport? Biol Res 39, 79–85. [PubMed] [Google Scholar]

459. Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100, 9–16. [PubMed] [Google Scholar]

460. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S & Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1, 191–200. [PubMed] [Google Scholar]

461. Madejczyk MS & Ballatori N (2012) The iron transporter ferroportin can also function as a manganese exporter. Biochim Biophys Acta Biomembr 1818, 651–657. [PMC free article] [PubMed] [Google Scholar]

462. Schweigel‐Röntgen M (2014) The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr Top Membr 73, 321–355. [PubMed] [Google Scholar]

463. Huang L & Tepaamorndech S (2013) The SLC30 family of zinc transporters – a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 34, 548–560. [PubMed] [Google Scholar]

464. Yu YY, Kirschke CP & Huang L (2007) Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem 55, 223–234. [PubMed] [Google Scholar]

465. Palmiter RD & Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447, 744–751. [PubMed] [Google Scholar]

466. Palmiter RD & Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14, 639–649. [PMC free article] [PubMed] [Google Scholar]

467. Langmade SJ, Ravindra R, Daniels PJ & Andrews GK (2000) The transcription factor MTF‐1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275, 34803–34809. [PubMed] [Google Scholar]

468. Nishito Y & Kambe T (2019) Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels. J Biol Chem 294, 15686–15697. [PMC free article] [PubMed] [Google Scholar]

469. Jeong J & Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34, 612–619. [PMC free article] [PubMed] [Google Scholar]

470. Bafaro E, Liu Y, Xu Y & Dempski RE (2017) The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther 2, 17029. [PMC free article] [PubMed] [Google Scholar]

471. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta Mol Cell Res 1763, 711–722. [PubMed] [Google Scholar]

472. Bowers K & Srai SKS (2018) The trafficking of metal ion transporters of the Zrt‐ and Irt‐like protein family. Traffic 19, 813–822. [PubMed] [Google Scholar]

473. Yamasaki S, Sakata‐Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K et al. (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177, 637–645. [PMC free article] [PubMed] [Google Scholar]

474. Han C‐T, Schoene NW & Lei KY (2009) Influence of zinc deficiency on Akt‐Mdm2‐p53 and Akt‐p21 signaling axes in normal and malignant human prostate cells. Am J Physiol Physiol 297, C1188–C1199. [PubMed] [Google Scholar]

475. Milon B, Dhermy D, Pountney D, Bourgeois M & Beaumont C (2001) Differential subcellular localization of hZip1 in adherent and non‐adherent cells. FEBS Lett 507, 241–246. [PubMed] [Google Scholar]

476. Wang F, Dufner‐Beattie J, Kim B‐E, Petris MJ, Andrews G & Eide DJ (2004) Zinc‐stimulated endocytosis controls activity of the mouse ZIP1 and ZIP3 zinc uptake transporters. J Biol Chem 279, 24631–24639. [PubMed] [Google Scholar]

477. Cousins RJ (2010) Gastrointestinal factors influencing zinc absorption and homeostasis. Int J Vitam Nutr Res 80, 243–248. [PMC free article] [PubMed] [Google Scholar]

478. Kim H, Wu X & Lee J (2013) SLC31 (CTR) family of copper transporters in health and disease. Mol Aspects Med 34, 561–570. [PMC free article] [PubMed] [Google Scholar]

479. Zhou B & Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94, 7481–7486. [PMC free article] [PubMed] [Google Scholar]

480. Lee J, Peña MMO, Nose Y & Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277, 4380–4387. [PubMed] [Google Scholar]

481. Magistrato A, Pavlin M, Qasem Z & Ruthstein S (2019) Copper trafficking in eukaryotic systems: current knowledge from experimental and computational efforts. Curr Opin Struct Biol 58, 26–33. [PMC free article] [PubMed] [Google Scholar]

482. Sahni J & Scharenberg AM (2013) The SLC41 family of MgtE‐like magnesium transporters. Mol Aspects Med 34, 620–628. [PMC free article] [PubMed] [Google Scholar]

483. de Baaij JHF, Arjona FJ, van den Brand M, Lavrijsen M, Lameris ALL, Bindels RJM & Hoenderop JGJ (2016) Identification of SLC41A3 as a novel player in magnesium homeostasis. Sci Rep 6, 28565. [PMC free article] [PubMed] [Google Scholar]

484. Kolisek M, Launay P, Beck A, Sponder G, Serafini N, Brenkus M, Froschauer EM, Martens H, Fleig A & Schweigel M (2008) SLC41A1 is a novel mammalian Mg 2+ carrier. J Biol Chem 283, 16235–16247. [PMC free article] [PubMed] [Google Scholar]

485. Goytain A & Quamme GA (2005) Functional characterization of human SLC41A1, a Mg 2+ transporter with similarity to prokaryotic MgtE Mg 2+ transporters. Physiol Genomics 21, 337–342. [PubMed] [Google Scholar]

486. Mandt T, Song Y, Scharenberg AM & Sahni J (2011) SLC41A1 Mg2+ transport is regulated via Mg2+‐dependent endosomal recycling through its N‐terminal cytoplasmic domain. Biochem J 439, 129–139. [PubMed] [Google Scholar]

487. Khan AA & Quigley JG (2013) Heme and FLVCR‐related transporter families SLC48 and SLC49. Mol Aspects Med 34, 669–682. [PMC free article] [PubMed] [Google Scholar]

488. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL & Abkowitz JL (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118, 757–766. [PubMed] [Google Scholar]

489. Ressnerova A, Raudenska M, Holubova M, Svobodova M, Polanska H, Babula P, Masarik M & Gumulec J (2016) Zinc and copper homeostasis in head and neck cancer: review and meta‐analysis. Curr Med Chem 23, 1304–1330. [PubMed] [Google Scholar]

490. Blaszczyk U & Duda‐Chodak A (2013) Magnesium: its role in nutrition and carcinogenesis. Rocz Państwowego Zakładu Hig 64, 165–171. [PubMed] [Google Scholar]

491. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K & Librowski T (2017) Antioxidant and anti‐inflammatory effects of zinc. Zinc‐dependent NF‐κB signaling. Inflammopharmacology 25, 11–24. [PMC free article] [PubMed] [Google Scholar]

492. Arredondo M & Núñez MT (2005) Iron and copper metabolism. Mol Aspects Med 26, 313–327. [PubMed] [Google Scholar]

493. Boer JL, Mulrooney SB & Hausinger RP (2014) Nickel‐dependent metalloenzymes. Arch Biochem Biophys 544, 142–152. [PMC free article] [PubMed] [Google Scholar]

494. Zhu B, Zhi Q, Xie Q, Wu X, Gao Y, Chen X & Shi L (2019) Reduced expression of ferroportin1 and ceruloplasmin predicts poor prognosis in adrenocortical carcinoma. J Trace Elem Med Biol 56, 52–59. [PubMed] [Google Scholar]

495. Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D’Agostino R, Torti SV & Torti FM (2011) An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res 71, 6728–6737. [PMC free article] [PubMed] [Google Scholar]

496. Kong Y, Hu L, Lu K, Wang Y, Xie Y, Gao L, Yang G, Xie B, He W, Chen G et al. (2019) Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR‐17‐5p axis in multiple myeloma. Cell Death Dis 10, 624. [PMC free article] [PubMed] [Google Scholar]

497. Cloonan N, Brown MK, Steptoe AL, Wani S, Forrest ARR, Kolle G, Gabrielli B & Grimmond SM (2008) The miR‐17‐5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9, 1–14. [PMC free article] [PubMed] [Google Scholar]

498. Wu J, Bao L, Zhang Z & Yi X (2017) Nrf2 induces cisplatin resistance via suppressing the iron export related gene SLC40A1 in ovarian cancer cells. Oncotarget 8, 93502–93515. [PMC free article] [PubMed] [Google Scholar]

499. Baltaci AK & Yuce K (2018) Zinc transporter proteins. Neurochem Res 43, 517–530. [PubMed] [Google Scholar]

500. Pan Z, Choi S, Ouadid‐Ahidouch H, Yang JM, Beattie JH & Korichneva I (2017) Zinc transporters and dysregulated channels in cancers. Front Biosci 22, 623–643. [PMC free article] [PubMed] [Google Scholar]

501. Fan Q, Cai Q, Li P, Wang W, Wang J, Gerry E, Wang T‐L, Shih I‐M, Nephew KP & Xu Y (2017) The novel ZIP4 regulation and its role in ovarian cancer. Oncotarget 8, 90090–90107. [PMC free article] [PubMed] [Google Scholar]

502. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang S‐M, Cousins RJ et al. (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci USA 104, 18636–18641. [PMC free article] [PubMed] [Google Scholar]

503. Takatani‐Nakase T (2018) Zinc transporters and the progression of breast cancers. Biol Pharm Bull 41, 1517–1522. [PubMed] [Google Scholar]

504. Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang J, Tai S, Jin L & Teng C (2019) Blockage of SLC31A1‐dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif 52, e12568. [PMC free article] [PubMed] [Google Scholar]

505. Wolf FI & Trapani V (2012) Magnesium and its transporters in cancer: a novel paradigm in tumour development. Clin Sci 123, 417–427. [PubMed] [Google Scholar]

506. Mendes PMV, Bezerra DLC, dos Santos LR, de Oliveira Santos R, de Sousa Melo SR, Morais JBS, Severo JS, Vieira SC & do Nascimento Marreiro Dilina (2018) Magnesium in breast cancer: what is its influence on the progression of this disease? Biol Trace Elem Res 184, 334–339. [PubMed] [Google Scholar]

507. Xie J, Cheng C‐s, Zhu XY, Shen YH, Song LB, Chen H, Chen Z, Liu LM & Meng ZQ (2019) Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium‐dependent Akt/mTOR inhibition and bax‐associated mitochondrial apoptosis. Aging 11, 2681–2698. [PMC free article] [PubMed] [Google Scholar]

508. Pols TWH, Noriega LG, Nomura M, Auwerx J & Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54, 1263–1272. [PMC free article] [PubMed] [Google Scholar]

509. Claudel T, Zollner G, Wagner M & Trauner M (2011) Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta Mol Basis Dis 1812, 867–878. [PubMed] [Google Scholar]

510. Claro Da Silva T, Polli JE & Swaan PW (2013) The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 34, 252–269. [PMC free article] [PubMed] [Google Scholar]

511. Bijsmans ITGW, Bouwmeester RAM, Geyer J, Faber KN & van de Graaf SFJ (2012) Homo‐ and hetero‐dimeric architecture of the human liver Na + ‐dependent taurocholate co‐transporting protein. Biochem J 441, 1007–1016. [PubMed] [Google Scholar]

512. Chothe PP, Czuba LC, Moore RH & Swaan PW (2018) Human Bile Acid Transporter ASBT (SLC10A2) forms functional non‐covalent homodimers and higher order oligomers. Biochim Biophys Acta 1860, 645. [PMC free article] [PubMed] [Google Scholar]

513. Slijepcevic D, Roscam Abbing RLP, Katafuchi T, Blank A, Donkers JM, van Hoppe S, de Waart DR, Tolenaars D, van der Meer JHM, Wildenberg M et al. (2017) Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 66, 1631–1643. [PMC free article] [PubMed] [Google Scholar]

514. Ananthanarayanan M, Ng OC, Boyer JL & Suchy FJ (1994) Characterization of cloned rat liver Na(+)‐bile acid cotransporter using peptide and fusion protein antibodies. Am J Physiol 267, G637–G643. [PubMed] [Google Scholar]

515. Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CECA, Evers R & Unadkat JD (2015) Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos 43, 367–374. [PubMed] [Google Scholar]

516. Weinman SA. Electrogenicity of Na(+)‐coupled bile acid transporters. Yale J Biol Med 70, 331–340. [PMC free article] [PubMed] [Google Scholar]

517. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H et al. (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049. [PMC free article] [PubMed] [Google Scholar]

518. Li W & Urban S (2016) Entry of hepatitis B and hepatitis D virus into hepatocytes: basic insights and clinical implications. J Hepatol 64, S32–S40. [PMC free article] [PubMed] [Google Scholar]

519. Dawson PA, Lan T & Rao A (2009) Bile acid transporters. J Lipid Res 50, 2340–2357. [PMC free article] [PubMed] [Google Scholar]

520. Weinman SA, Carruth MW & Dawson PA (1998) Bile acid uptake via the human apical sodium‐bile acid cotransporter is electrogenic. J Biol Chem 273, 34691–34695. [PubMed] [Google Scholar]

521. Bakhaus K, Fietz D, Kliesch S, Weidner W, Bergmann M & Geyer J (2018) The polymorphism L204F affects transport and membrane expression of the sodium‐dependent organic anion transporter SOAT (SLC10A6). J Steroid Biochem Mol Biol 179, 36–44. [PubMed] [Google Scholar]

522. Grosser G, Bennien J, Sánchez‐Guijo A, Bakhaus K, Döring B, Hartmann M, Wudy SA & Geyer J (2018) Transport of steroid 3‐sulfates and steroid 17‐sulfates by the sodium‐dependent organic anion transporter SOAT (SLC10A6). J Steroid Biochem Mol Biol 179, 20–25. [PubMed] [Google Scholar]

523. Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J et al. (2017) The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 172, 207–221. [PubMed] [Google Scholar]

524. Hagenbuch B & Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO super‐family, new nomenclature and molecular/functional properties. Pflugers Arch Eur J Physiol 447, 653–665. [PubMed] [Google Scholar]

525. Obaidat A, Roth M & Hagenbuch B (2012) The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 52, 135–151. [PMC free article] [PubMed] [Google Scholar]

526. Zaïr ZM, Eloranta JJ, Stieger B & Kullak‐Ublick GA (2008) Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics 9, 597–624. [PubMed] [Google Scholar]

527. König J (2011) Uptake transporters of the human OATP family. Handb Exp Pharmacol 201, 1–28. [PubMed] [Google Scholar]

528. Rebello S, Zhao S, Hariry S, Dahlke M, Alexander N, Vapurcuyan A, Hanna I & Jarugula V (2012) Intestinal OATP1A2 inhibition as a potential mechanism for the effect of grapefruit juice on aliskiren pharmacokinetics in healthy subjects. Eur J Clin Pharmacol 68, 697–708. [PubMed] [Google Scholar]

529. Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, Jolicoeur E, Lee W, Leake BF, Tirona RG et al. (2007) Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther 81, 362–370. [PubMed] [Google Scholar]

530. Eloranta JJ, Hiller C, Jüttner M & Kullak‐Ublick GA (2012) The SLCO1A2 gene, encoding human organic anion‐transporting polypeptide 1A2, is transactivated by the vitamin D receptor. Mol Pharmacol 82, 37–46. [PubMed] [Google Scholar]

531. Zheng J, Chan T, Cheung FSG, Zhu L, Murray M & Zhou F (2014) PDZK1 and NHERF1 regulate the function of human organic anion transporting polypeptide 1A2 (OATP1A2) by modulating its subcellular trafficking and stability. PLoS One 9, e94712. [PMC free article] [PubMed] [Google Scholar]

532. Choi JH, Murray JW & Wolkoff AW (2011) PDZK1 binding and serine phosphorylation regulate subcellular trafficking of organic anion transport protein 1a1. Am J Physiol Liver Physiol 300, G384–G393. [PMC free article] [PubMed] [Google Scholar]

533. Nakamura Y, Nakanishi T, Shimada H, Shimizu J, Aotani R, Maruyama S, Higuchi K, Okura T, Deguchi Y & Tamai I (2018) Prostaglandin transporter OATP2A1/ SLCO2A1 is essential for body temperature regulation during fever. J Neurosci 38, 5584–5595. [PMC free article] [PubMed] [Google Scholar]

534. Visentin M, Chang MH, Romero MF, Zhao R & Goldman ID (2012) Substrate‐ and pH‐specific antifolate transport mediated by organic anion‐transporting polypeptide 2B1 (OATP2B1‐SLCO2B1). Mol Pharmacol 81, 134–142. [PMC free article] [PubMed] [Google Scholar]

535. Roth M, Obaidat A & Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165, 1260–1287. [PMC free article] [PubMed] [Google Scholar]

536. Wagner M & Trauner M (2016) Recent advances in understanding and managing cholestasis. F1000Research 5, 705 [PMC free article] [PubMed] [Google Scholar]

537. Pan Q, Zhang X, Zhang L, Cheng Y, Zhao N, Li F, Zhou X, Chen S, Li J, Xu S et al. (2018) Solute carrier organic anion transporter family member 3A1 is a bile acid efflux transporter in cholestasis. Gastroenterology 155, 1578–1592.e16. [PMC free article] [PubMed] [Google Scholar]

538. Ban MJ, Ji SH, Lee C‐K, Bae SB, Kim HJ, Ahn TS, Lee MS, Baek M‐J & Jeong D (2017) Solute carrier organic anion transporter family member 4A1 (SLCO4A1) as a prognosis marker of colorectal cancer. J Cancer Res Clin Oncol 143, 1437–1447. [PubMed] [Google Scholar]

539. Li T & Apte U (2015) Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv Pharmacol 74, 263–302. [PMC free article] [PubMed] [Google Scholar]

540. Wang W, Xue S, Ingles SA, Chen Q, Diep AT, Frankl HD, Stolz A & Haile RW (2001) An association between genetic polymorphisms in the ileal sodium‐dependent bile acid transporter gene and the risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 10, 931–936. [PubMed] [Google Scholar]

541. Jean‐Pierre R, Dawson PA, Rao A, Drachenberg CB, Heath J, Shang AC, Hu S, Zhan M, Polli JE & Cheng K (2015) Slc10a2‐null mice uncover colon cancer‐promoting actions of endogenous fecal bile acids. Carcinogenesis 36, 1193–1200. [PMC free article] [PubMed] [Google Scholar]

542. Shi A‐x, Zhou Y, Zhang X‐y, Zhao Y‐s, Qin H‐y, Wang Y‐p & Wu X‐a (2017) Irinotecan‐induced bile acid malabsorption is associated with down‐regulation of ileal Asbt (Slc10a2) in mice. Eur J Pharm Sci 102, 220–229. [PubMed] [Google Scholar]

543. Schulte RR & Ho RH (2019) Organic anion transporting polypeptides: emerging roles in cancer pharmacology. Mol Pharmacol 95, 490–506. [PMC free article] [PubMed] [Google Scholar]

544. Niemi M (2007) Role of OATP transporters in the disposition of drugs. Pharmacogenomics 8, 787–802. [PubMed] [Google Scholar]

545. Thakkar N, Lockhart AC & Lee W (2015) Role of Organic Anion‐Transporting Polypeptides (OATPs) in cancer therapy. AAPS J 17, 535–545. [PMC free article] [PubMed] [Google Scholar]

546. Collins JF, Kiela PR, Xu H, Zeng J & Ghishan FK (1998) Increased NHE2 expression in rat intestinal epithelium during ontogeny is transcriptionally mediated. Am J Physiol Physiol 275, C1143–C1150. [PubMed] [Google Scholar]

547. Collins JF, Xu H, Kiela PR, Zeng J & Ghishan FK (1997) Functional and molecular characterization of NHE3 expression during ontogeny in rat jejunal epithelium. Am J Physiol Physiol 273, C1937–C1946. [PubMed] [Google Scholar]

548. Hahn MK & Blakely RD (2007) The functional impact of SLC6 transporter genetic variation. Annu Rev Pharmacol Toxicol 47, 401–441. [PubMed] [Google Scholar]

549. Kurian MA, Gissen P, Smith M, Heales SJ & Clayton PT (2011) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10, 721–733. [PubMed] [Google Scholar]

550. Seow HF, Bröer S, Bröer A, Bailey CG, Potter SJ, Cavanaugh JA & Rasko JEJ (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36, 1003–1007. [PubMed] [Google Scholar]

551. Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L et al. (2017) The prognostic value of GLUT1 in cancers: a systematic review and meta‐analysis. Oncotarget 8, 43356–43367. [PMC free article] [PubMed] [Google Scholar]

552. Liao Q‐D, Wang C‐G, Zhu Y‐D, Chen W‐H, Shao S‐L, Jiang F‐N & Xu X‐M (2016) Decreased expression of SLC39A14 is associated with tumor aggressiveness and biochemical recurrence of human prostate cancer. Onco Targets Ther 9, 4197–4205. [PMC free article] [PubMed] [Google Scholar]

553. Latif A, Chadwick AL, Kitson SJ, Gregson HJ, Sivalingam VN, Bolton J, McVey RJ, Roberts SA, Marshall KM, Williams KJ et al. (2017) Monocarboxylate transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer. BMC Clin Pathol 17, 27. [PMC free article] [PubMed] [Google Scholar]

554. Yue M, Jiang J, Gao P, Liu H & Qing G (2017) Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis. Cell Rep 21, 3819–3832. [PubMed] [Google Scholar]

555. Bin B‐H, Seo J & Kim ST (2018) Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res 2018, 9365747. [PMC free article] [PubMed] [Google Scholar]

556. Fisel P, Schaeffeler E & Schwab M (2018) Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci 11, 352–364. [PMC free article] [PubMed] [Google Scholar]

557. Futagi Y, Kobayashi M, Narumi K, Furugen A & Iseki K (2018) Identification of a selective inhibitor of human monocarboxylate transporter 4. Biochem Biophys Res Commun 495, 427–432. [PubMed] [Google Scholar]

558. Polański R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE et al. (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res 20, 926–937. [PMC free article] [PubMed] [Google Scholar]

559. Vishwakarma P, Banerjee A, Pasrija R, Prasad R & Lynn AM (2018) Phylogenetic and conservation analyses of MFS transporters. 3 Biotech 8, 462. [PMC free article] [PubMed] [Google Scholar]

560. Saier MH, Daniels GA, Boerner P & Lin J (1988) Neutral amino acid transport systems in animal cells: potential targets of oncogene action and regulators of cellular growth. J Membr Biol 104, 1–20. [PubMed] [Google Scholar]

561. Palacín M, Estévez R, Bertran J & Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78, 969–1054. [PubMed] [Google Scholar]

562. Meixner E, Goldmann U, Sedlyarov V, Scorzoni S, Rebsamen M, Girardi E & Superti‐Furga G (2020) A substrate‐based ontology for human solute carriers. Mol Syst Biol 16, e9652. [PMC free article] [PubMed] [Google Scholar]


Page 2

Which of the following statements best describes some aspect of the function of a protein that Cotransports glucose and sodium ions into the intestinal cells of an animal?

Different transport systems of amino acids.

Transport system [182, 560, 561]MeaningTransporters from SLC families
System AProteins cotransport Na+ with small, polar amino acids amino acidsSLC38
System NProteins cotransport Na+ with His, Gln, or Asn and the simultaneous antiport of protonsSLC38
System LProteins that have Na+ independent transport of large hydrophobic neutral amino acidsSLC3/7, SLC43
System ASCProteins cotransport Na+ with Ala, Ser, or CysSLC1
System ascProteins transport small neutral amino acidsSLC3/7
System xC − Proteins exchange Cys for GluSLC3/7
System xAG − Proteins cotransport Na+ with Asp or Glu and antiport K+ SLC1
System y+LProteins cotransport Na+ with cationic and neutral amino acidsSLC3/7
System y+ Proteins transport cationic amino acidsSLC7
System b0,+ Proteins transport cationic amino acids as well as neutral amino acidsSLC3/7
System B0 Proteins cotransport Na+ with neutral amino acidsSLC6