When an object is moving at a constant speed in a circle is it accelerating Why or why not?

{"appState":{"pageLoadApiCallsStatus":true},"articleState":{"article":{"headers":{"creationTime":"2016-03-26T17:21:31+00:00","modifiedTime":"2016-03-26T17:21:31+00:00","timestamp":"2022-09-14T18:06:52+00:00"},"data":{"breadcrumbs":[{"name":"Academics & The Arts","_links":{"self":"//dummies-api.dummies.com/v2/categories/33662"},"slug":"academics-the-arts","categoryId":33662},{"name":"Science","_links":{"self":"//dummies-api.dummies.com/v2/categories/33756"},"slug":"science","categoryId":33756},{"name":"Physics","_links":{"self":"//dummies-api.dummies.com/v2/categories/33769"},"slug":"physics","categoryId":33769}],"title":"How Centripetal Acceleration Keeps an Object Moving in a Constant Circle","strippedTitle":"how centripetal acceleration keeps an object moving in a constant circle","slug":"how-centripetal-acceleration-keeps-an-object-moving-in-a-constant-circle","canonicalUrl":"","seo":{"metaDescription":"In physics, when an object travels in uniform circular motion, its speed is constant, which means that the magnitude of the object’s velocity doesn’t change. Th","noIndex":0,"noFollow":0},"content":"<p>In physics, when an object travels in uniform circular motion, its speed is constant, which means that the magnitude of the object’s velocity doesn’t change. Therefore, acceleration can have no component in the same direction as the velocity; if it did, the velocity’s magnitude would change.</p>\n<div class=\"imageBlock\" style=\"width:400px;\"><img src=\"//sg.cdnki.com/when-an-object-is-moving-at-a-constant-speed-in-a-circle-is-it-accelerating-why-or-why-not---aHR0cHM6Ly93d3cuZHVtbWllcy5jb20vd3AtY29udGVudC91cGxvYWRzLzMzMTIzNC5pbWFnZTAuanBn.webp\" width=\"400\" height=\"400\" alt=\"Velocity constantly changes direction, but not magnitude, when an object is in circular motion.\"/><div class=\"imageCaption\">Velocity constantly changes direction, but not magnitude, when an object is in circular motion.</div></div>\n<p>However, as this figure shows, the velocity’s direction is constantly changing — it always bends so that the object maintains movement in a constant circle. To make that happen, the object’s centripetal acceleration is always directed toward the center of the circle, perpendicular to the object’s velocity at any one time. The acceleration changes the direction of the object’s velocity while keeping the magnitude of the velocity constant.</p>\n<div class=\"imageBlock\" style=\"width:358px;\"><img src=\"//sg.cdnki.com/when-an-object-is-moving-at-a-constant-speed-in-a-circle-is-it-accelerating-why-or-why-not---aHR0cHM6Ly93d3cuZHVtbWllcy5jb20vd3AtY29udGVudC91cGxvYWRzLzMzMTIzNS5pbWFnZTEuanBn.webp\" width=\"358\" height=\"400\" alt=\"A golf ball on a string traveling with constant speed.\"/><div class=\"imageCaption\">A golf ball on a string traveling with constant speed.</div></div>\n<p>In the example shown here, the string exerts a force on the ball to keep it going in a circle — a force that provides the ball’s centripetal acceleration. In order to provide that force, you have to constantly pull on the ball toward the center of the circle. (Picture what it feels like, force-wise, to whip an object around on a string.) You can see the centripetal acceleration vector, <i>a</i><i><sub>c</sub></i><i>,</i> in the figure.</p>\n<p>If you accelerate the ball toward the center of the circle to provide the centripetal acceleration, why doesn’t it hit your hand? The answer is that the ball is already moving at a high speed. The force, and therefore the acceleration, that you provide always acts at right angles to the velocity.</p>\n<p class=\"Remember\">You always have to accelerate an object toward the center of the circle to keep it moving in circular motion. So can you find the magnitude of the acceleration you create? No doubt. If an object is moving in uniform circular motion at speed <i>v</i> and radius <i>r</i>, you can find the magnitude of the centripetal acceleration with the following equation:</p>\n<img src=\"//sg.cdnki.com/when-an-object-is-moving-at-a-constant-speed-in-a-circle-is-it-accelerating-why-or-why-not---aHR0cHM6Ly93d3cuZHVtbWllcy5jb20vd3AtY29udGVudC91cGxvYWRzLzMzMTIzNi5pbWFnZTIucG5n.webp\" width=\"56\" height=\"41\" alt=\"image2.png\"/>\n<p>For a practical example, imagine you’re driving around curves at a high speed. For any constant speed, you can see from the equation that the centripetal acceleration is inversely proportional to the radius of the curve. In other words, on tighter curves (as the radius decreases), there needs to be a greater centripetal acceleration (provided by the friction between the tires and the road).</p>","description":"<p>In physics, when an object travels in uniform circular motion, its speed is constant, which means that the magnitude of the object’s velocity doesn’t change. Therefore, acceleration can have no component in the same direction as the velocity; if it did, the velocity’s magnitude would change.</p>\n<div class=\"imageBlock\" style=\"width:400px;\"><img src=\"//www.dummies.com/wp-content/uploads/331234.image0.jpg\" width=\"400\" height=\"400\" alt=\"Velocity constantly changes direction, but not magnitude, when an object is in circular motion.\"/><div class=\"imageCaption\">Velocity constantly changes direction, but not magnitude, when an object is in circular motion.</div></div>\n<p>However, as this figure shows, the velocity’s direction is constantly changing — it always bends so that the object maintains movement in a constant circle. To make that happen, the object’s centripetal acceleration is always directed toward the center of the circle, perpendicular to the object’s velocity at any one time. The acceleration changes the direction of the object’s velocity while keeping the magnitude of the velocity constant.</p>\n<div class=\"imageBlock\" style=\"width:358px;\"><img src=\"//www.dummies.com/wp-content/uploads/331235.image1.jpg\" width=\"358\" height=\"400\" alt=\"A golf ball on a string traveling with constant speed.\"/><div class=\"imageCaption\">A golf ball on a string traveling with constant speed.</div></div>\n<p>In the example shown here, the string exerts a force on the ball to keep it going in a circle — a force that provides the ball’s centripetal acceleration. In order to provide that force, you have to constantly pull on the ball toward the center of the circle. (Picture what it feels like, force-wise, to whip an object around on a string.) You can see the centripetal acceleration vector, <i>a</i><i><sub>c</sub></i><i>,</i> in the figure.</p>\n<p>If you accelerate the ball toward the center of the circle to provide the centripetal acceleration, why doesn’t it hit your hand? The answer is that the ball is already moving at a high speed. The force, and therefore the acceleration, that you provide always acts at right angles to the velocity.</p>\n<p class=\"Remember\">You always have to accelerate an object toward the center of the circle to keep it moving in circular motion. So can you find the magnitude of the acceleration you create? No doubt. If an object is moving in uniform circular motion at speed <i>v</i> and radius <i>r</i>, you can find the magnitude of the centripetal acceleration with the following equation:</p>\n<img src=\"//www.dummies.com/wp-content/uploads/331236.image2.png\" width=\"56\" height=\"41\" alt=\"image2.png\"/>\n<p>For a practical example, imagine you’re driving around curves at a high speed. For any constant speed, you can see from the equation that the centripetal acceleration is inversely proportional to the radius of the curve. In other words, on tighter curves (as the radius decreases), there needs to be a greater centripetal acceleration (provided by the friction between the tires and the road).</p>","blurb":"","authors":[{"authorId":8967,"name":"Steven Holzner","slug":"steven-holzner","description":" <p><b> Dr. Steven Holzner</b> has written more than 40 books about physics and programming. He was a contributing editor at <i>PC Magazine</i> and was on the faculty at both MIT and Cornell. He has authored Dummies titles including <i>Physics For Dummies</i> and <i>Physics Essentials For Dummies.</i> Dr. Holzner received his PhD at Cornell.</p> ","hasArticle":false,"_links":{"self":"//dummies-api.dummies.com/v2/authors/8967"}}],"primaryCategoryTaxonomy":{"categoryId":33769,"title":"Physics","slug":"physics","_links":{"self":"//dummies-api.dummies.com/v2/categories/33769"}},"secondaryCategoryTaxonomy":{"categoryId":0,"title":null,"slug":null,"_links":null},"tertiaryCategoryTaxonomy":{"categoryId":0,"title":null,"slug":null,"_links":null},"trendingArticles":null,"inThisArticle":[],"relatedArticles":{"fromBook":[{"articleId":208460,"title":"Physics I For Dummies Cheat Sheet","slug":"physics-i-for-dummies-cheat-sheet","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/208460"}},{"articleId":184049,"title":"A List of Physics Constants","slug":"a-list-of-physics-constants","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/184049"}},{"articleId":184043,"title":"Physics Equations and Formulas","slug":"physics-equations-and-formulas","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/184043"}},{"articleId":174308,"title":"Calculating Tangential Velocity on a Curve","slug":"calculating-tangential-velocity-on-a-curve","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/174308"}},{"articleId":174307,"title":"Flowing from Hot to Cold: The Second Law of Thermodynamics","slug":"flowing-from-hot-to-cold-the-second-law-of-thermodynamics","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/174307"}}],"fromCategory":[{"articleId":209405,"title":"String Theory For Dummies Cheat Sheet","slug":"string-theory-for-dummies-cheat-sheet","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/209405"}},{"articleId":209012,"title":"Physics II For Dummies Cheat Sheet","slug":"physics-ii-for-dummies-cheat-sheet","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/209012"}},{"articleId":208592,"title":"Thermodynamics For Dummies Cheat Sheet","slug":"thermodynamics-for-dummies-cheat-sheet","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/208592"}},{"articleId":208578,"title":"Optics For Dummies Cheat Sheet","slug":"optics-for-dummies-cheat-sheet","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/208578"}},{"articleId":208460,"title":"Physics I For Dummies Cheat Sheet","slug":"physics-i-for-dummies-cheat-sheet","categoryList":["academics-the-arts","science","physics"],"_links":{"self":"//dummies-api.dummies.com/v2/articles/208460"}}]},"hasRelatedBookFromSearch":false,"relatedBook":{"bookId":282467,"slug":"physics-i-for-dummies","isbn":"9781119872221","categoryList":["academics-the-arts","science","physics"],"amazon":{"default":"//www.amazon.com/gp/product/1119872227/ref=as_li_tl?ie=UTF8&tag=wiley01-20","ca":"//www.amazon.ca/gp/product/1119872227/ref=as_li_tl?ie=UTF8&tag=wiley01-20","indigo_ca":"//www.tkqlhce.com/click-9208661-13710633?url=//www.chapters.indigo.ca/en-ca/books/product/1119872227-item.html&cjsku=978111945484","gb":"//www.amazon.co.uk/gp/product/1119872227/ref=as_li_tl?ie=UTF8&tag=wiley01-20","de":"//www.amazon.de/gp/product/1119872227/ref=as_li_tl?ie=UTF8&tag=wiley01-20"},"image":{"src":"//www.dummies.com/wp-content/uploads/9781119872221-203x255.jpg","width":203,"height":255},"title":"Physics I For Dummies","testBankPinActivationLink":"","bookOutOfPrint":true,"authorsInfo":"<p><b> Dr. <b data-author-id=\"8967\">Steven Holzner</b></b> has written more than 40 books about physics and programming. He was a contributing editor at <i>PC Magazine</i> and was on the faculty at both MIT and Cornell. He has authored Dummies titles including <i>Physics For Dummies</i> and <i>Physics Essentials For Dummies.</i> Dr. Holzner received his PhD at Cornell.</p>","authors":[{"authorId":8967,"name":"Steven Holzner","slug":"steven-holzner","description":" <p><b> Dr. Steven Holzner</b> has written more than 40 books about physics and programming. He was a contributing editor at <i>PC Magazine</i> and was on the faculty at both MIT and Cornell. He has authored Dummies titles including <i>Physics For Dummies</i> and <i>Physics Essentials For Dummies.</i> Dr. Holzner received his PhD at Cornell.</p> ","hasArticle":false,"_links":{"self":"//dummies-api.dummies.com/v2/authors/8967"}}],"_links":{"self":"//dummies-api.dummies.com/v2/books/"}},"collections":[],"articleAds":{"footerAd":"<div class=\"du-ad-region row\" id=\"article_page_adhesion_ad\"><div class=\"du-ad-unit col-md-12\" data-slot-id=\"article_page_adhesion_ad\" data-refreshed=\"false\" \r\n data-target = \"[{&quot;key&quot;:&quot;cat&quot;,&quot;values&quot;:[&quot;academics-the-arts&quot;,&quot;science&quot;,&quot;physics&quot;]},{&quot;key&quot;:&quot;isbn&quot;,&quot;values&quot;:[&quot;9781119872221&quot;]}]\" id=\"du-slot-6322183c552d5\"></div></div>","rightAd":"<div class=\"du-ad-region row\" id=\"article_page_right_ad\"><div class=\"du-ad-unit col-md-12\" data-slot-id=\"article_page_right_ad\" data-refreshed=\"false\" \r\n data-target = \"[{&quot;key&quot;:&quot;cat&quot;,&quot;values&quot;:[&quot;academics-the-arts&quot;,&quot;science&quot;,&quot;physics&quot;]},{&quot;key&quot;:&quot;isbn&quot;,&quot;values&quot;:[&quot;9781119872221&quot;]}]\" id=\"du-slot-6322183c55b7b\"></div></div>"},"articleType":{"articleType":"Articles","articleList":null,"content":null,"videoInfo":{"videoId":null,"name":null,"accountId":null,"playerId":null,"thumbnailUrl":null,"description":null,"uploadDate":null}},"sponsorship":{"sponsorshipPage":false,"backgroundImage":{"src":null,"width":0,"height":0},"brandingLine":"","brandingLink":"","brandingLogo":{"src":null,"width":0,"height":0},"sponsorAd":"","sponsorEbookTitle":"","sponsorEbookLink":"","sponsorEbookImage":{"src":null,"width":0,"height":0}},"primaryLearningPath":"Advance","lifeExpectancy":null,"lifeExpectancySetFrom":null,"dummiesForKids":"no","sponsoredContent":"no","adInfo":"","adPairKey":[]},"status":"publish","visibility":"public","articleId":174070},"articleLoadedStatus":"success"},"listState":{"list":{},"objectTitle":"","status":"initial","pageType":null,"objectId":null,"page":1,"sortField":"time","sortOrder":1,"categoriesIds":[],"articleTypes":[],"filterData":{},"filterDataLoadedStatus":"initial","pageSize":10},"adsState":{"pageScripts":{"headers":{"timestamp":"2022-11-03T10:50:01+00:00"},"adsId":0,"data":{"scripts":[{"pages":["all"],"location":"header","script":"<!--Optimizely Script-->\r\n<script src=\"//cdn.optimizely.com/js/10563184655.js\"></script>","enabled":false},{"pages":["all"],"location":"header","script":"<!-- comScore Tag -->\r\n<script>var _comscore = _comscore || [];_comscore.push({ c1: \"2\", c2: \"15097263\" });(function() {var s = document.createElement(\"script\"), el = document.getElementsByTagName(\"script\")[0]; s.async = true;s.src = (document.location.protocol == \"\" ? \"//sb\" : \"//b\") + \".scorecardresearch.com/beacon.js\";el.parentNode.insertBefore(s, el);})();</script><noscript><img src=\"//sb.scorecardresearch.com/p?c1=2&c2=15097263&cv=2.0&cj=1\" /></noscript>\r\n<!-- / comScore Tag -->","enabled":true},{"pages":["all"],"location":"footer","script":"<!--BEGIN QUALTRICS WEBSITE FEEDBACK SNIPPET-->\r\n<script type='text/javascript'>\r\n(function(){var g=function(e,h,f,g){\r\nthis.get=function(a){for(var a=a+\"=\",c=document.cookie.split(\";\"),b=0,e=c.length;b<e;b++){for(var d=c[b];\" \"==d.charAt(0);)d=d.substring(1,d.length);if(0==d.indexOf(a))return d.substring(a.length,d.length)}return null};\r\nthis.set=function(a,c){var b=\"\",b=new Date;b.setTime(b.getTime()+6048E5);b=\"; expires=\"+b.toGMTString();document.cookie=a+\"=\"+c+b+\"; path=/; \"};\r\nthis.check=function(){var a=this.get(f);if(a)a=a.split(\":\");else if(100!=e)\"v\"==h&&(e=Math.random()>=e/100?0:100),a=[h,e,0],this.set(f,a.join(\":\"));else return!0;var c=a[1];if(100==c)return!0;switch(a[0]){case \"v\":return!1;case \"r\":return c=a[2]%Math.floor(100/c),a[2]++,this.set(f,a.join(\":\")),!c}return!0};\r\nthis.go=function(){if(this.check()){var a=document.createElement(\"script\");a.type=\"text/javascript\";a.src=g;document.body&&document.body.appendChild(a)}};\r\nthis.start=function(){var t=this;\"complete\"!==document.readyState?window.addEventListener?window.addEventListener(\"load\",function(){t.go()},!1):window.attachEvent&&window.attachEvent(\"onload\",function(){t.go()}):t.go()};};\r\ntry{(new g(100,\"r\",\"QSI_S_ZN_5o5yqpvMVjgDOuN\",\"//zn5o5yqpvmvjgdoun-wiley.siteintercept.qualtrics.com/SIE/?Q_ZID=ZN_5o5yqpvMVjgDOuN\")).start()}catch(i){}})();\r\n</script><div id='ZN_5o5yqpvMVjgDOuN'><!--DO NOT REMOVE-CONTENTS PLACED HERE--></div>\r\n<!--END WEBSITE FEEDBACK SNIPPET-->","enabled":false},{"pages":["all"],"location":"header","script":"<!-- Hotjar Tracking Code for //www.dummies.com -->\r\n<script>\r\n (function(h,o,t,j,a,r){\r\n h.hj=h.hj||function(){(h.hj.q=h.hj.q||[]).push(arguments)};\r\n h._hjSettings={hjid:257151,hjsv:6};\r\n a=o.getElementsByTagName('head')[0];\r\n r=o.createElement('script');r.async=1;\r\n r.src=t+h._hjSettings.hjid+j+h._hjSettings.hjsv;\r\n a.appendChild(r);\r\n })(window,document,'//static.hotjar.com/c/hotjar-','.js?sv=');\r\n</script>","enabled":false},{"pages":["article"],"location":"header","script":"<!-- //Connect Container: dummies --> <script src=\"//get.s-onetag.com/bffe21a1-6bb8-4928-9449-7beadb468dae/tag.min.js\" async defer></script>","enabled":true},{"pages":["homepage"],"location":"header","script":"<meta name=\"facebook-domain-verification\" content=\"irk8y0irxf718trg3uwwuexg6xpva0\" />","enabled":true},{"pages":["homepage","article","category","search"],"location":"footer","script":"<!-- Facebook Pixel Code -->\r\n<noscript>\r\n<img height=\"1\" width=\"1\" src=\"//www.facebook.com/tr?id=256338321977984&ev=PageView&noscript=1\"/>\r\n</noscript>\r\n<!-- End Facebook Pixel Code -->","enabled":true}]}},"pageScriptsLoadedStatus":"success"},"navigationState":{"navigationCollections":[{"collectionId":287568,"title":"BYOB (Be Your Own Boss)","hasSubCategories":false,"url":"/collection/for-the-entry-level-entrepreneur-287568"},{"collectionId":293237,"title":"Be a Rad Dad","hasSubCategories":false,"url":"/collection/be-the-best-dad-293237"},{"collectionId":294090,"title":"Contemplating the Cosmos","hasSubCategories":false,"url":"/collection/theres-something-about-space-294090"},{"collectionId":287563,"title":"For Those Seeking Peace of Mind","hasSubCategories":false,"url":"/collection/for-those-seeking-peace-of-mind-287563"},{"collectionId":287570,"title":"For the Aspiring Aficionado","hasSubCategories":false,"url":"/collection/for-the-bougielicious-287570"},{"collectionId":291903,"title":"For the Budding Cannabis Enthusiast","hasSubCategories":false,"url":"/collection/for-the-budding-cannabis-enthusiast-291903"},{"collectionId":291934,"title":"For the Exam-Season Crammer","hasSubCategories":false,"url":"/collection/for-the-exam-season-crammer-291934"},{"collectionId":287569,"title":"For the Hopeless Romantic","hasSubCategories":false,"url":"/collection/for-the-hopeless-romantic-287569"},{"collectionId":287567,"title":"For the Unabashed Hippie","hasSubCategories":false,"url":"/collection/for-the-unabashed-hippie-287567"},{"collectionId":295430,"title":"Have a Beautiful (and Tasty) Thanksgiving","hasSubCategories":false,"url":"/collection/have-a-wonderful-thanksgiving-295430"}],"navigationCollectionsLoadedStatus":"success","navigationCategories":{"books":{"0":{"data":[{"categoryId":33512,"title":"Technology","hasSubCategories":true,"url":"/category/books/technology-33512"},{"categoryId":33662,"title":"Academics & The Arts","hasSubCategories":true,"url":"/category/books/academics-the-arts-33662"},{"categoryId":33809,"title":"Home, Auto, & Hobbies","hasSubCategories":true,"url":"/category/books/home-auto-hobbies-33809"},{"categoryId":34038,"title":"Body, Mind, & Spirit","hasSubCategories":true,"url":"/category/books/body-mind-spirit-34038"},{"categoryId":34224,"title":"Business, Careers, & Money","hasSubCategories":true,"url":"/category/books/business-careers-money-34224"}],"breadcrumbs":[],"categoryTitle":"Level 0 Category","mainCategoryUrl":"/category/books/level-0-category-0"}},"articles":{"0":{"data":[{"categoryId":33512,"title":"Technology","hasSubCategories":true,"url":"/category/articles/technology-33512"},{"categoryId":33662,"title":"Academics & The Arts","hasSubCategories":true,"url":"/category/articles/academics-the-arts-33662"},{"categoryId":33809,"title":"Home, Auto, & Hobbies","hasSubCategories":true,"url":"/category/articles/home-auto-hobbies-33809"},{"categoryId":34038,"title":"Body, Mind, & Spirit","hasSubCategories":true,"url":"/category/articles/body-mind-spirit-34038"},{"categoryId":34224,"title":"Business, Careers, & Money","hasSubCategories":true,"url":"/category/articles/business-careers-money-34224"}],"breadcrumbs":[],"categoryTitle":"Level 0 Category","mainCategoryUrl":"/category/articles/level-0-category-0"}}},"navigationCategoriesLoadedStatus":"success"},"searchState":{"searchList":[],"searchStatus":"initial","relatedArticlesList":[],"relatedArticlesStatus":"initial"},"routeState":{"name":"Article3","path":"/article/academics-the-arts/science/physics/how-centripetal-acceleration-keeps-an-object-moving-in-a-constant-circle-174070/","hash":"","query":{},"params":{"category1":"academics-the-arts","category2":"science","category3":"physics","article":"how-centripetal-acceleration-keeps-an-object-moving-in-a-constant-circle-174070"},"fullPath":"/article/academics-the-arts/science/physics/how-centripetal-acceleration-keeps-an-object-moving-in-a-constant-circle-174070/","meta":{"routeType":"article","breadcrumbInfo":{"suffix":"Articles","baseRoute":"/category/articles"},"prerenderWithAsyncData":true},"from":{"name":null,"path":"/","hash":"","query":{},"params":{},"fullPath":"/","meta":{}}},"dropsState":{"submitEmailResponse":false,"status":"initial"},"sfmcState":{"status":"initial"},"profileState":{"auth":{},"userOptions":{},"status":"success"}}

In physics, when an object travels in uniform circular motion, its speed is constant, which means that the magnitude of the object’s velocity doesn’t change. Therefore, acceleration can have no component in the same direction as the velocity; if it did, the velocity’s magnitude would change.

Velocity constantly changes direction, but not magnitude, when an object is in circular motion.

However, as this figure shows, the velocity’s direction is constantly changing — it always bends so that the object maintains movement in a constant circle. To make that happen, the object’s centripetal acceleration is always directed toward the center of the circle, perpendicular to the object’s velocity at any one time. The acceleration changes the direction of the object’s velocity while keeping the magnitude of the velocity constant.

A golf ball on a string traveling with constant speed.

In the example shown here, the string exerts a force on the ball to keep it going in a circle — a force that provides the ball’s centripetal acceleration. In order to provide that force, you have to constantly pull on the ball toward the center of the circle. (Picture what it feels like, force-wise, to whip an object around on a string.) You can see the centripetal acceleration vector, ac, in the figure.

If you accelerate the ball toward the center of the circle to provide the centripetal acceleration, why doesn’t it hit your hand? The answer is that the ball is already moving at a high speed. The force, and therefore the acceleration, that you provide always acts at right angles to the velocity.

You always have to accelerate an object toward the center of the circle to keep it moving in circular motion. So can you find the magnitude of the acceleration you create? No doubt. If an object is moving in uniform circular motion at speed v and radius r, you can find the magnitude of the centripetal acceleration with the following equation:

For a practical example, imagine you’re driving around curves at a high speed. For any constant speed, you can see from the equation that the centripetal acceleration is inversely proportional to the radius of the curve. In other words, on tighter curves (as the radius decreases), there needs to be a greater centripetal acceleration (provided by the friction between the tires and the road).

Toplist

Latest post

TAGs