When an athletes maximal performance is desired carbohydrates are a more efficient fuel than fat because?

1. Hawley JA, Leckey JJ.. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45(suppl 1):S5–12. [PMC free article] [PubMed] [Google Scholar]

2. Institute of Medicine. Dietary carbohydrates, sugars and starches. In: Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: National Academies Press; 2005:265–338. [Google Scholar]

3. Thomas TD, Erdman KA, Burke LM.. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48:543–568.http://dx.doi.org/10.1249/MSS.0000000000000852 [PubMed] [Google Scholar]

4. Burke LM, van Loon LJ, Hawley JA.. Post-exercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122:1055–1067.http://dx.doi.org/10.1152/japplphysiol.00860.2016 [PubMed] [Google Scholar]

5. Anderson L, Orme P, Naughton RJ et al., Energy intake and expenditure of professional soccer players of the English Premier League: evidence of carbohydrate periodization. Int J Sports Nutr Exerc Metab. 2017;27:228–238.http://dx.doi.org/10.1123/ijsnem.2016-0259 [PubMed] [Google Scholar]

6. Devlin BL, Leveritt MD, Kingsley M et al., Dietary intake, body composition and nutrition knowledge of Australian football and soccer players: implications for sports nutrition professionals in practice. Int J Sports Nutr Exerc Metab. 2017;27:130–138.http://dx.doi.org/10.1123/ijsnem.2016-0191 [PubMed] [Google Scholar]

7. Mullins VA, Houtkooper LB, Howell WH et al., Nutritional status of US elite female heptathletes during training. Int J Sport Nutr Exer Metab. 2001;11:299–314.http://dx.doi.org/10.1123/ijsnem.11.3.299 [PubMed] [Google Scholar]

8. Birkenhead KL, Slater G.. A review of factors influencing athletes’ food choices. Sports Med. 2015;45:1511–1522. [PubMed] [Google Scholar]

9. Trakman GL, Forsyth A, Devlin BL et al., A systematic review of athletes’ and coaches’ nutrition knowledge and reflections on the quality of current nutrition knowledge measures. Nutrients. 2016;8:1–23. [PMC free article] [PubMed] [Google Scholar]

10. Depre C, Vanoverschelde JJ, Taegtmeyer H.. Glucose for the heart. Circulation. 1999;99:578–588.http://dx.doi.org/10.1161/01.CIR.99.4.578 [PubMed] [Google Scholar]

11. Guyton AC, Hall JE.. Guyton and Hall Textbook of Medical Physiology. New York: Saunders/Elsevier; 2011. [Google Scholar]

12. Adeva-Andany MM, Gonzalez-Lucan M, Donapetry-Garcia C et al., Glycogen metabolism in humans. BBA Clin. 2016;5:85–100. [PMC free article] [PubMed] [Google Scholar]

13. Philp A, Hargreaves M, Baar K.. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrin Metab. 2012;302:E1343–E1351. [PubMed] [Google Scholar]

14. Fernandez-Elias VE, Ortega JF, Nelson RK et al., Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans. Eur J Appl Physiol. 2015;115:1919–1926.http://dx.doi.org/10.1007/s00421-015-3175-z [PubMed] [Google Scholar]

15. Kreitzman SN, Coxon AY, Szaz KF.. Glycogen storage: illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition. Am J Clin Nutr. 1992;56(1 suppl):292S–293S. [PubMed] [Google Scholar]

16. Meyer RA, Wiseman RW.. The metabolic systems: control of ATP synthesis in skeletal muscle. In: Farrell PA, Joyner MJ, Caiozzo VJ, ed. ACSM’s Advanced Exercise Physiology. 2nd ed.Philadelphia, PA: Wolters Kluwer; 2012:363–378. [Google Scholar]

17. Jensen TE, Richter EA.. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol (London). 2012;590:1069–1076.http://dx.doi.org/10.1113/jphysiol.2011.224972 [PMC free article] [PubMed] [Google Scholar]

18. Ceperuelo-Mallafre V, Ejarque M, Serena C et al., Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Molec Metab. 2016;5:5–18.http://dx.doi.org/10.1016/j.molmet.2015.10.001 [PMC free article] [PubMed] [Google Scholar]

19. Brown AM, Ransom BR.. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55:1263–1271.http://dx.doi.org/10.1002/glia.20557 [PubMed] [Google Scholar]

20. Wasserman DH. Four grams of glucose. Am J Physiol Endocrinol Metab. 2009;296:E11–E21. [PMC free article] [PubMed] [Google Scholar]

21. Bosch AN, Weltan SM, Dennis SC et al., Fuel substrate turnover and oxidation and glycogen sparing with carbohydrate ingestion in non-carbohydrate-loaded cyclists. Pflügers Arch. 1996;432:1003–1010. [PubMed] [Google Scholar]

22. Gonzalez JT, Fuchs CJ, Betts JA et al., Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endo Metab. 2016;311:E543–E553. [PubMed] [Google Scholar]

23. De Bock K, Derave W, Ramaekers M et al., Fiber type-specific muscle glycogen sparing due to carbohyrate intake befor and during exercise. J Appl Physiol. 2007;102:183–188.http://dx.doi.org/10.1152/japplphysiol.00799.2006 [PubMed] [Google Scholar]

24. Fryer KL, Brown AM.. Pluralistic roles for glycogen in the central and peripheral nervous systems. Metab Brain Dis. 2015;30:299–306.http://dx.doi.org/10.1007/s11011-014-9516-5 [PubMed] [Google Scholar]

25. Obel LF, Muller MS, Walls AB et al., Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg. 2012;4:1–15. [PMC free article] [PubMed] [Google Scholar]

26. Chambers TW, Daly TP, Hockley A et al., Contribution of glycogen in supporting axon conduction in the peripheral and central nervous systems: the role of lactate. Front Neurosci. 2014;8:1–6. [PMC free article] [PubMed] [Google Scholar]

27. Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience. 2007;145:11–19.http://dx.doi.org/10.1016/j.neuroscience.2006.11.062 [PubMed] [Google Scholar]

28. Duran J, Guinovart JJ.. Brain glycogen in health and disease. Molec Aspects Med. 2015;46:70–77.http://dx.doi.org/10.1016/j.mam.2015.08.007 [PubMed] [Google Scholar]

29. Krogh A, Lindhard J.. The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J. 1920;14:290–363.http://dx.doi.org/10.1042/bj0140290 [PMC free article] [PubMed] [Google Scholar]

30. Levine SA, Gordon B, Derick CL.. Some changes in the chemical constituents of the blood following a marathon—with especial reference to the development of hypoglycemia. JAMA. 1924;82:1778–1779. [Google Scholar]

31. Gordon B, Kohn LA, Levine SA et al., Sugar content of the blood in runners following a marathon race—especial reference to the prevention of hypoglycemia. JAMA. 1925;83:508–509. [Google Scholar]

32. Bergstrom J, Hultman E.. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210:309–310.http://dx.doi.org/10.1038/210309a0 [PubMed] [Google Scholar]

33. Bergstrom J, Hermansen L, Hultman E et al., Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–150.http://dx.doi.org/10.1111/j.1748-1716.1967.tb03720.x [PubMed] [Google Scholar]

34. Hermansen L, Hultman E, Saltin B.. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71:129–139.http://dx.doi.org/10.1111/j.1748-1716.1967.tb03719.x [PubMed] [Google Scholar]

35. Hultman E, Bergstrom J.. Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med Scand. 1967;182:109–117. [PubMed] [Google Scholar]

36. Murray R, Sugar, sports drinks, and performance. In: Rippe JM, ed. Fructose, High Fructose Corn Syrup, Sucrose and Health. New York: Humana Press; 2014:293–305. [Google Scholar]

37. Burke LM, Maughan RJ.. The governor has a sweet tooth—mouth sensing of nutrients to enhance sports performance. Eur J Sports Sci. 2015;15:29–40. [PubMed] [Google Scholar]

38. Carter J, Jeukendrup A, Jones D.. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:2107–2111. [PubMed] [Google Scholar]

39. Clarke ND, Hammond S, Kornilios E et al., Carbohydrate mouth rinse improves morning high-intensity exercise performance. Eur J Sports Sci. 2017;17:955–963.http://dx.doi.org/10.1080/17461391.2017.1333159 [PubMed] [Google Scholar]

40. Hargreaves M. The metabolic systems: carbohydrate metabolism. In: Farrell P, ed. ACSM's Advanced Exercise Physiology. 2nd ed.Philadelphia: Lippincott Williams & Wilkins; 2012:379–391. [Google Scholar]

41. Ivy J. The regulation and synthesis of muscle glycogen by means of nutrient intervention. In: Maughan R, ed. Sports Nutrition. Vol. 19 West Sussex, UK: Wiley Blackwell; 2014:113–125. [Google Scholar]

42. Smythe C, Cohen P.. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur J Biochem. 1991;200:625–631.http://dx.doi.org/10.1111/j.1432-1033.1991.tb16225.x [PubMed] [Google Scholar]

43. Shearer J, Wilson RJ, Battram DS et al., Increases in glycogenin and glycogenin mRNA accompany glycogen resynthesis in human skeletal muscle. Am J Physiol Endocrin Metab. 2005;289:E508–E514. [PubMed] [Google Scholar]

44. Shearer J, Graham TE, Battram DS et al., Glycogenin activity and mRNA expression in response to volitional exhaustion in human skeletal muscle. J Appl Physiol. 2005;99:957–962.http://dx.doi.org/10.1152/japplphysiol.00275.2005 [PubMed] [Google Scholar]

45. Lomako J, Lomako WM, Whelan WJ.. The biogenesis of glycogen: nature of the carbohydrate in the protein primer. Biochem Int. 1990;21:251–260. [PubMed] [Google Scholar]

46. Lomako J, Lomako WM, Whelan WJ.. The nature of the primer for glycogen synthesis in muscle. FEBS Lett. 1990;268:8–12.http://dx.doi.org/10.1016/0014-5793(90)80959-M [PubMed] [Google Scholar]

47. Lomako J, Lomako WM, Whelan WJ.. Proglycogen: a low-molecular-weight form of muscle glycogen. FEBS Lett. 1991;279:223–228.http://dx.doi.org/10.1016/0014-5793(91)80154-U [PubMed] [Google Scholar]

48. Schweitzer GG, Kearney ML, Mittendorfer B.. Muscle glycogen: where did you come from, where did you go? J Physiol. 2017;595:2771–2772. [PMC free article] [PubMed] [Google Scholar]

49. Nielsen J, Ortenblad N.. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38:91–99.http://dx.doi.org/10.1139/apnm-2012-0184 [PubMed] [Google Scholar]

50. Gejl KD, Ortenblad N, Andersson E et al., Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol (London). 2017;595:2809–2821.http://dx.doi.org/10.1113/JP273109 [PMC free article] [PubMed] [Google Scholar]

51. Nielsen J, Holmberg HC, Schroder HD et al., Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol. 2011;589(pt 11):2871–2885. [PMC free article] [PubMed] [Google Scholar]

52. Ortenblad N, Nielsen J, Saltin B, Holmberg HC.. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(pt 3):711–725. [PMC free article] [PubMed] [Google Scholar]

53. Knuiman P, Hopman MT, Mensink M.. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (London). 2015;12:59.http://dx.doi.org/10.1186/s12986-015-0055-9 [PMC free article] [PubMed] [Google Scholar]

54. Ahlborg B, Brohult J.. Immediate and delayed metabolic reactions in well-trained subjects after prolonged physical exercise. Acta Med Scand. 1967;182:41–54. [PubMed] [Google Scholar]

55. Bergstrom J, Hultman E, Roch-Norlund AE.. Muscle glycogen synthetase in normal subjects. Basal values, effect of glycogen depletion by exercise and of a carbohydrate-rich diet following exercise. Scand J Clin Lab Invest. 1972;29:231–236. [PubMed] [Google Scholar]

56. Sherman WM, Costill DL, Fink WJ et al., Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2:114–118.http://dx.doi.org/10.1055/s-2008-1034594 [PubMed] [Google Scholar]

57. Bussau VA, Fairchild TJ, Rao A et al., Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87:290–295.http://dx.doi.org/10.1007/s00421-002-0621-5 [PubMed] [Google Scholar]

58. Bartlett JD, Hawley JA, Morton JP.. Carbohydrate availability and exercise training adaptation: too much of a good thing?. Eur J Sports Sci. 2015;15:3–12.http://dx.doi.org/10.1080/17461391.2014.920926 [PubMed] [Google Scholar]

59. Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20(suppl 2):48–58. [PubMed] [Google Scholar]

60. Hawley J. Manipulating carbohydrate availability to promote training adaptation. Sports Sci Exchange. 2014;27:1–7. [Google Scholar]

61. Marquet LA, Brisswalter J, Louis J et al., Enhanced endurance performance by periodization of carbohydrate intake: “sleep low” strategy. Med Sci Sports Exerc. 2016;48:663–672. [PubMed] [Google Scholar]

62. Marquet LA, Hausswirth C, Molle O et al., Periodization of carbohydrate intake: short-term effect on performance. Nutrients. 2016;8:2–13 [PMC free article] [PubMed] [Google Scholar]

63. Yeo WK, Paton CD, Garnham AP et al., Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–1470.http://dx.doi.org/10.1152/japplphysiol.90882.2008 [PubMed] [Google Scholar]

64. Betts JA, Williams C.. Short-term recovery from prolonged exercise: exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Med. 2010;40:941–959.http://dx.doi.org/10.2165/11536900-000000000-00000 [PubMed] [Google Scholar]

65. Ivy JL, Goforth HW Jr, Damon BM et al., Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–1344.http://dx.doi.org/10.1152/japplphysiol.00394.2002 [PubMed] [Google Scholar]

66. Roberts PA, Fox J, Peirce N et al., Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids. 2016;48:1831–1842.http://dx.doi.org/10.1007/s00726-016-2252-x [PMC free article] [PubMed] [Google Scholar]

67. Sewell DA, Robinson TM, Greenhaff PL.. Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise. J Appl Physiol. 2008;104:508–512.http://dx.doi.org/10.1152/japplphysiol.00787.2007 [PubMed] [Google Scholar]

68. Burke LM, Kiens B.. “Fat adaptation” for athletic performance: the nail in the coffin? J Appl Physiol. 2006;100:7–8. [PubMed] [Google Scholar]

69. Zachwieja JJ, Costill DL, Pascoe DD et al., Influence of muscle glycogen depletion on the rate of resynthesis. Med Sci Sports Exerc. 1991;23:44–48. [PubMed] [Google Scholar]

70. McInerney P, Lessard SJ, Burke LM et al., Failure to repeatedly supercompensate muscle glycogen stores in highly trained men. Med Sci Sports Exerc. 2005;37:404–411.http://dx.doi.org/10.1249/01.MSS.0000155699.51360.2F [PubMed] [Google Scholar]

71. Hermansen L, Vaage O.. Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am J Physiol. 1977;233:E422–E429. [PubMed] [Google Scholar]

72. Mul JD, Stanford KI, Hirshman MF et al., Exercise and regulation of carbohydrate metabolism. Prog Mol Biol Transl Sci. 2015;135:17–37. [PMC free article] [PubMed] [Google Scholar]

73. Shulman RG, Rothman DL.. The “glycogen shunt” in exercising muscle: a role for glycogen in muscle energetics and fatigue. Proc Natl Acad Sci U S A. 2001;98:457–461. [PMC free article] [PubMed] [Google Scholar]

74. Krustrup P, Ortenblad N, Nielsen J et al., Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111:2987–2995.http://dx.doi.org/10.1007/s00421-011-1919-y [PubMed] [Google Scholar]

75. Costill DL, Sparks K, Gregor R et al., Muscle glycogen utilization during exhaustive running. J Appl Physiol. 1971;31:353–356.http://dx.doi.org/10.1152/jappl.1971.31.3.353 [PubMed] [Google Scholar]

76. Costill DL, Bowers R, Branam G et al., Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol. 1971;31:834–838.http://dx.doi.org/10.1152/jappl.1971.31.6.834 [PubMed] [Google Scholar]

77. Sherman WM, Doyle JA, Lamb DR et al., Dietary carbohydrate, muscle glycogen, and exercise performance during 7 d of training. Am J Clin Nutr. 1993;57:27–31.http://dx.doi.org/10.1093/ajcn/57.1.27 [PubMed] [Google Scholar]

78. Cochran AJ, Myslik F, MacInnis MJ et al., Manipulating carbohydrate availability between twice-daily sessions of high-intensity interval training over 2 weeks improves time-trial performance. Int J Sports Nutr Exerc Metab. 2015;25:463–470.http://dx.doi.org/10.1123/ijsnem.2014-0263 [PubMed] [Google Scholar]

79. Hansen AK, Fischer CP, Plomgaard P et al., Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol. 2005;98:93–99. [PubMed] [Google Scholar]

80. Pascoe DD, Costill DL, Fink WJ et al., Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc. 1993;25:349–354. [PubMed] [Google Scholar]

81. Tesch PA, Colliander EB, Kaiser P.. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1986;55:362–366.http://dx.doi.org/10.1007/BF00422734 [PubMed] [Google Scholar]

82. Camera DM, Hawley JA, Coffey VG.. Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1alpha mRNA in skeletal muscle. Eur J Appl Physiol. 2015;115:1185–1194.http://dx.doi.org/10.1007/s00421-015-3116-x [PubMed] [Google Scholar]

83. Escobar KA, VanDusseldorp TA, Kerksick CM.. Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? Br J Nutr. 2016;116:2053–2065. [PubMed] [Google Scholar]

84. Coyle EF, Coggan AR, Hemmert MK et al., Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61:165–172.http://dx.doi.org/10.1152/jappl.1986.61.1.165 [PubMed] [Google Scholar]

85. Sherman WM, Wimer GS.. Insufficient dietary carbohydrate during training: does it impair athletic performance? Int J Sports Nutr. 1991;1:28–44. [PubMed] [Google Scholar]

86. Helge JW. A high carbohydrate diet remains the evidence based choice for elite athletes to optimise performance. J Physiol (London). 2017;595:2775.http://dx.doi.org/10.1113/JP273830 [PMC free article] [PubMed] [Google Scholar]

87. Coyle EF. Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci. 1991;9:29–51; discussion 51–22. [PubMed] [Google Scholar]

88. Starling RD, Trappe TA, Parcell AC et al., Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol. 1997;82:1185–1189.http://dx.doi.org/10.1152/jappl.1997.82.4.1185 [PubMed] [Google Scholar]

89. Burke LM, Collier GR, Hargreaves M.. Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol. 1993;75:1019–1023.http://dx.doi.org/10.1152/jappl.1993.75.2.1019 [PubMed] [Google Scholar]

90. Burke LM, Cox GR, Cummings NK et al., Guidelines for daily carbohydrate intake. Sports Med. 2001;31:267–299.http://dx.doi.org/10.2165/00007256-200131040-00003 [PubMed] [Google Scholar]

91. Burke LM, Ross ML, Garvican-Lewis LA et al., Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595:2785–2807.http://dx.doi.org/10.1113/JP273230 [PMC free article] [PubMed] [Google Scholar]

92. Hawley JA, Hargreaves M, Zierath JR.. Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem. 2006;42:1–12.http://dx.doi.org/10.1042/bse0420001 [PubMed] [Google Scholar]

93. Jeukendrup AE. Periodized nutrition for athletes. Sports Med. 2017;47(Suppl 1):51–63. [PMC free article] [PubMed] [Google Scholar]

94. Richter EA, Derave W, Wojtaszewski JF.. Glucose, exercise and insulin: emerging concepts. J Physiol (London). 2001;535(pt 2):313–322. [PMC free article] [PubMed] [Google Scholar]

95. Mikines KJ, Farrell PA, Sonne B et al., Postexercise dose-response relationship between plasma glucose and insulin secretion. J Appl Physiol. 1988;64:988–999.http://dx.doi.org/10.1152/jappl.1988.64.3.988 [PubMed] [Google Scholar]

96. van Loon LJ, Saris WH, Kruijshoop M et al., Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72:106–111. [PubMed] [Google Scholar]

97. Burke LM, Hawley JA, Wong SH et al., Carbohydrates for training and competition. J Sports Sci. 2011;29(suppl 1):S17–S27. [PubMed] [Google Scholar]

98. Tarnopolsky MA, Zawada C, Richmond LB et al., Gender differences in carbohydrate loading are related to energy intake. J Appl Physiol. 2001;91:225–230.http://dx.doi.org/10.1152/jappl.2001.91.1.225 [PubMed] [Google Scholar]

99. Asp S, Daugaard JR, Richter EA.. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J Physiol. 1995;482(pt 3):705–712. [PMC free article] [PubMed] [Google Scholar]

100. Asp S, Daugaard JR, Kristiansen S et al., Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects. J Physiol. 1996;494(pt 3):891–898. [PMC free article] [PubMed] [Google Scholar]

101. Blom PC, Costill DL, Vollestad NK.. Exhaustive running: inappropriate as a stimulus of muscle glycogen super-compensation. Med Sci Sports Exerc. 1987;19:398-403. [PubMed] [Google Scholar]

102. Costill DL, Pascoe DD, Fink WJ et al., Impaired muscle glycogen resynthesis after eccentric exercise. J Appl Physiol. 1990;69:46–50.http://dx.doi.org/10.1152/jappl.1990.69.1.46 [PubMed] [Google Scholar]

103. Widrick JJ, Costill DL, McConell GK et al., Time course of glycogen accumulation after eccentric exercise. J Appl Physiol. 1992;72:1999–2004.http://dx.doi.org/10.1152/jappl.1992.72.5.1999 [PubMed] [Google Scholar]

104. Blom PC, Hostmark AT, Vaage O et al., Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19:491–496. [PubMed] [Google Scholar]

105. Shi X, Passe DH.. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exer Metab. 2010;20:427–442.http://dx.doi.org/10.1123/ijsnem.20.5.427 [PubMed] [Google Scholar]

106. Baker LB, Jeukendrup AE.. Optimal composition of fluid-replacement beverages. Compr Physiol. 2014;4:575–620. [PubMed] [Google Scholar]

107. Jentjens R, Achten J, Jeukendrup A.. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36:1551–1558.http://dx.doi.org/10.1249/01.MSS.0000139796.07843.1D [PubMed] [Google Scholar]

108. Keizer HA, Kuipers H, van Kranenburg G et al., Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8:99–104.http://dx.doi.org/10.1055/s-2008-1025649 [PubMed] [Google Scholar]

109. Reed MJ, Brozinick JT Jr, Lee MC et al., Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. J Appl Physiol. 1989;66:720–726.http://dx.doi.org/10.1152/jappl.1989.66.2.720 [PubMed] [Google Scholar]

110. Cramer MJ, Dumke CL, Hailes WS et al., Postexercise glycogen recovery and exerciseperformance is not significantly different between fast food and sport supplements. Int J Sport Nutr Exerc Metab. 2015;25:448–455.http://dx.doi.org/10.1123/ijsnem.2014-0230 [PubMed] [Google Scholar]

111. Jenkins DJ, Wolever TM, Taylor RH et al., Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34:362–366.http://dx.doi.org/10.1093/ajcn/34.3.362 [PubMed] [Google Scholar]

112. Montain SJ, Hopper MK, Coggan AR et al., Exercise metabolism at different time intervals after a meal. J Appl Physiol. 1991;70:882–888.http://dx.doi.org/10.1152/jappl.1991.70.2.882 [PubMed] [Google Scholar]

113. Wu CL, Williams C.. A low glycemic index meal before exercise improves endurance running capacity in men. Int J Sports Nutr Exerc Metab. 2006;16:510–527.http://dx.doi.org/10.1123/ijsnem.16.5.510 [PubMed] [Google Scholar]

114. Wee SL, Williams C, Tsintzas K et al., Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol. 2005;99:707–714.http://dx.doi.org/10.1152/japplphysiol.01261.2004 [PubMed] [Google Scholar]

115. Little JP, Chilibeck PD, Ciona D et al., The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int J Sports Physiol Perf. 2009;4:367–380.http://dx.doi.org/10.1123/ijspp.4.3.367 [PubMed] [Google Scholar]

116. Little JP, Chilibeck PD, Ciona D et al., Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int J Sports Nutr Exerc Metab. 2010;20:447–456.http://dx.doi.org/10.1123/ijsnem.20.6.447 [PubMed] [Google Scholar]

117. Rauch LH, Rodger I, Wilson GR et al., The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sports Nutr. 1995;5:25–36.http://dx.doi.org/10.1123/ijsn.5.1.25 [PubMed] [Google Scholar]

118. Brown LJ, Midgley AW, Vince RV et al., High versus low glycemic index 3-h recovery diets following glycogen-depleting exercise has no effect on subsequent 5-km cycling time trial performance. J Sci Med Sport. 2013;16:450–454.http://dx.doi.org/10.1016/j.jsams.2012.10.006 [PubMed] [Google Scholar]

119. Goodpaster BH, Costill DL, Fink WJ et al., The effects of pre-exercise starch ingestion on endurance performance. Int J Sports Med. 1996;17:366–372.http://dx.doi.org/10.1055/s-2007-972862 [PubMed] [Google Scholar]

120. Gray BJ, Page R, Turner D et al., Improved end-stage high-intensity performance but similar glycemic responses after waxy barley starch ingestion compared to dextrose in type 1 diabetes. J Sports Med Phys Fit. 2016;56:1392–1400. [PubMed] [Google Scholar]

121. Jozsi AC, Trappe TA, Starling RD et al., The influence of starch structure on glycogen resynthesis and subsequent cycling performance. Int J Sports Med. 1996;17:373–378.http://dx.doi.org/10.1055/s-2007-972863 [PubMed] [Google Scholar]

122. Vicente-Salar N, Urdampilleta Otegui A, Roche Collado E.. Endurance training in fasting conditions: biological adaptations and body weight management. Nutr Hosp. 2015;32:2409–2420. [PubMed] [Google Scholar]

123. Cox PJ, Clarke K.. Acute nutritional ketosis: implications for exercise performance and metabolism. Extreme Physiol Med. 2014;3:1–9. [PMC free article] [PubMed] [Google Scholar]

124. Scott JM, Deuster PA.. Ketones and human performance. J Spec Oper Med. 2017;17:112–116. [PubMed] [Google Scholar]

125. Vandoorne T, De Smet S, Ramaekers M et al., Intake of a ketone ester drink during recovery from exercise promotes mTORC1 signaling but not glycogen resynthesis in human muscle. Front Physiol. 2017;8:1–12. [PMC free article] [PubMed] [Google Scholar]

126. Jentjens RL, van Loon LJ, Mann CH et al., Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91:839–846.http://dx.doi.org/10.1152/jappl.2001.91.2.839 [PubMed] [Google Scholar]

127. van Hall G, Shirreffs SM, Calbet JAL.. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. J Appl Physiol. 2000;88:1631–1636.http://dx.doi.org/10.1152/jappl.2000.88.5.1631 [PubMed] [Google Scholar]

128. Morton RW, McGlory C, Phillips SM.. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol. 2015;6:245. [PMC free article] [PubMed] [Google Scholar]

129. Phillips SM, Chevalier S, Leidy HJ.. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41:565–572. [PubMed] [Google Scholar]

130. Breen L, Tipton KD, Jeukendrup AE.. No effect of carbohydrate-protein on cycling performance and indices of recovery. Med Sci Sports Exerc. 2010;42:1140–1148. [PubMed] [Google Scholar]

131. Hansen M, Bangsbo J, Jensen J et al., Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sports Nutr. 2016;13:1–11. [PMC free article] [PubMed] [Google Scholar]

132. Robinson TM, Sewell DA, Hultman E et al., Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol. 1999;87:598–604.http://dx.doi.org/10.1152/jappl.1999.87.2.598 [PubMed] [Google Scholar]

133. Beelen M, Burke LM, Gibala MJ et al., Nutritional strategies to promote postexercise recovery. Int J Sports Nutr Exerc Metab. 2010;20:515–532.http://dx.doi.org/10.1123/ijsnem.20.6.515 [PubMed] [Google Scholar]

134. Pedersen D, Lessard S, Coffey V et al., High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol. 2008;105:7–13.http://dx.doi.org/10.1152/japplphysiol.01121.2007 [PubMed] [Google Scholar]

135. Gregson W, Allan R, Holden S et al., Postexercise cold-water immersion does not attenuate muscle glycogen resynthesis. Med Sci Sports Exerc. 2013;45:1174–1181.http://dx.doi.org/10.1249/MSS.0b013e3182814462 [PubMed] [Google Scholar]

136. Slivka D, Tucker T, Cuddy J et al., Local heat application enhances glycogenesis. Appl Physiol Nutr Metab. 2012;37:247–251.http://dx.doi.org/10.1139/h11-157 [PubMed] [Google Scholar]

137. Tucker TJ, Slivka DR, Cuddy JS et al., Effect of local cold application on glycogen recovery. J Sports Med Phys Fitness. 2012;52:158–164. [PubMed] [Google Scholar]

138. Cartee GD. Influence of age on skeletal muscle glucose transport and glycogen metabolism. Med Sci Sports Exerc. 1994;26:577–585. [PubMed] [Google Scholar]

139. Cartee GD. Aging skeletal muscle: response to exercise. Exerc Sport Sci Rev. 1994;22:91–120. [PubMed] [Google Scholar]

140. Doering TM, Reaburn PR, Phillips SM et al., Postexercise dietary protein strategies to maximize skeletal muscle repair and remodeling in masters endurance athletes: a review. Int J Sports Nutr Exerc Metab. 2016;26:168–178.http://dx.doi.org/10.1123/ijsnem.2015-0102 [PubMed] [Google Scholar]

141. Brisswalter J, Nosaka K.. Neuromuscular factors associated with decline in long-distance running performance in master athletes. Sports Med. 2013;43:51–63.http://dx.doi.org/10.1007/s40279-012-0006-9 [PubMed] [Google Scholar]

142. US Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th ed.Washington, DC: US Dept of Health and Human Services; 2015. http://www.health.gov/DietaryGuidelines. Accessed February 20, 2017. [Google Scholar]

143. Quagliani D, Felt-Gunderson P.. Closing America’s fiber intake gap: communication strategies from a food and fiber summit. Am J Lifestyle Med. 2017;11:80–85. [Google Scholar]

144. US Department of Agriculture. National Nutrition Database. https://ndb.nal.usda.gov/ndb/. Accessed May 28, 2017. [Google Scholar]

145. Zelman K. Web MD Portion Size Guide. http://img.webmd.com/dtmcms/live/webmd/consumer_assets/site_images/media/pdf/diet/portion-control-guide.pdf. Accessed February 20, 2017. [Google Scholar]


Page 2

The glycogen content of liver and muscle

TissueAverage (g)Normal range (g)
Muscle500300–700
Liver800–160