What type of mutation occurs in sickle-cell anemia and how do mutations affect protein structure and function?

What type of mutation occurs in sickle-cell anemia and how do mutations affect protein structure and function?

Understanding:

•  New alleles are formed by mutation

    
A gene mutation is a change in the nucleotide sequence of a section of DNA coding for a specific trait

  • New alleles are formed by mutation


Gene mutations can be beneficial, detrimental or neutral

  • Beneficial mutations change the gene sequence (missense mutations) to create new variations of a trait
  • Detrimental mutations truncate the gene sequence (nonsense mutations) to abrogate the normal function of a trait
  • Neutral mutations have no effect on the functioning of the specific feature (silent mutations)

Types of Gene Mutations

What type of mutation occurs in sickle-cell anemia and how do mutations affect protein structure and function?

What type of mutation occurs in sickle-cell anemia and how do mutations affect protein structure and function?

Application:

•  The cause of sickle cell anaemia, including a base substitution mutation, a change to the base sequence of

    mRNA transcribed from it and a change to the sequence of a polypeptide in haemoglobin

    
Sickle cell anaemia is an example of a disorder caused by a gene mutation

  • The disease allele arose from a base substitution mutation – where a single base was changed in the gene sequence

Cause of Sickle Cell Anaemia

Sickle cell anaemia results from a change to the 6th codon for the beta chain of haemoglobin

  • DNA:  The DNA sequence changes from GAG to GTG on the non-transcribed strand (CTC to CAC on the template strand)
  • mRNA:  The mRNA sequence changes from GAG to GUG at the 6th codon position
  • Polypeptide:  The sixth amino acid for the beta chain of haemoglobin is changed from glutamic acid to valine (Glu to Val)

What type of mutation occurs in sickle-cell anemia and how do mutations affect protein structure and function?

Consequence of Sickle Cell Anaemia

The amino acid change (Glu  Val) alters the structure of haemoglobin, causing it to form insoluble fibrous strands

  • The insoluble haemoglobin cannot carry oxygen as effectively, causing the individual to feel constantly tired


The formation of fibrous haemoglobin strands changes the shape of the red blood cell to a sickle shape

  • The sickle cells may form clots within the capillaries, blocking blood supply to vital organs and causing myriad health issues
  • The sickle cells are also destroyed more rapidly than normal cells, leading to a low red blood cell count (anaemia)

What type of mutation occurs in sickle-cell anemia and how do mutations affect protein structure and function?

Mutations in the HBB gene on chromosome 11 can cause sickle cell. The beta globin protein is one of the subunits of hemoglobin, a protein necessary for the oxygen-carrying function of red blood cells. People with the sickle cell mutation in both copies of the HBB gene produce proteins that clump together and lead to changes in the shape and behavior of red blood cells.

red blood cells,function of red blood cells,sickle cell mutation,chromosome 11,clump,hemoglobin,subunits,mutations,proteins,oxygen,protein,shape,beta globin

  • ID: 15968
  • Source: DNALC.DNAi

[1] Roseff SD. Sickle cell disease: a review. Immunohematology 2009; 25:67-74; PMID:19927623 [PubMed] [Google Scholar]

[2] Angastiniotis M, Modell B, Englezos P, Boulyjenkov V. Prevention and control of haemoglobinopathies. Bull World Health Organ 1995; 73:375-86; PMID:7614670 [PMC free article] [PubMed] [Google Scholar]

[3] Serjeant GR. Sickle-cell disease. Lancet 1997; 350:725-30; PMID:9291916; http://dx.doi.org/ 10.1016/S0140-6736(97)07330-3 [PubMed] [CrossRef] [Google Scholar]

[4] Diallo D, Tchernia G. Sickle cell disease in Africa. Curr Opin Hematol 2002; 9:111-6; PMID:11844993; http://dx.doi.org/ 10.1097/00062752-200203000-00005 [PubMed] [CrossRef] [Google Scholar]

[5] Streetly A, Latinovic R, Hall K, Henthorn J. Implementation of universal newborn bloodspot screening for sickle cell disease and other clinically significant haemoglobinopathies in England: screening results for 2005–7. J Clin Pathol 2009; 62:26-30; PMID:19103854; http://dx.doi.org/ 10.1136/jcp.2008.058859 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[6] Hassell KL. Population estimates of sickle cell disease in the US. Am J Prev Med 2010; 38:S512-21; PMID:20331952; http://dx.doi.org/ 10.1016/j.amepre.2009.12.022 [PubMed] [CrossRef] [Google Scholar]

[7] Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, et al.. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294:2368-71; PMID:11743206; http://dx.doi.org/ 10.1126/science.1065806 [PubMed] [CrossRef] [Google Scholar]

[8] Arends T, Lehmann H, Plowman D, Stathopoulou R. Haemoglobin North Shore-Caracas β 134 (H12) valine replaced by glutamic acid. FEBS Lett 1977; 80:261-5; PMID:891976; http://dx.doi.org/ 10.1016/0014-5793(77)80453-5 [PubMed] [CrossRef] [Google Scholar]

[9] Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998:473-84; PMID:9697205 [PubMed] [Google Scholar]

[10] Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; http://dx.doi.org/ 10.1006/jmbi.1999.3110 [PubMed] [CrossRef] [Google Scholar]

[11] Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; http://dx.doi.org/ 10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7 [PubMed] [CrossRef] [Google Scholar]

[12] Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al.. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; PMID:11381529; http://dx.doi.org/ 10.1016/S1093-3263(00)00138-8 [PubMed] [CrossRef] [Google Scholar]

[13] Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; PMID:12368089; http://dx.doi.org/ 10.1016/S0968-0004(02)02169-2 [PubMed] [CrossRef] [Google Scholar]

[14] Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins In: Buchner J, Kiefhaber T, eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA; 2005:271-353 [Google Scholar]

[15] Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta 2010; 1804:1231-64; PMID:20117254; http://dx.doi.org/ 10.1016/j.bbapap.2010.01.017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[16] Uversky VN, Dunker AK. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biology Reports 2013; 5:1; PMID:23361308; http://dx.doi.org/ 10.3410/B5-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[17] Hemmings HC Jr, Nairn AC, Aswad DW, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J Neurosci 1984; 4:99-110; PMID:6319628 [PMC free article] [PubMed] [Google Scholar]

[18] Gast K, Damaschun H, Eckert K, Schulze-Forster K, Maurer HR, Muller-Frohne M, Zirwer D, Czarnecki J, Damaschun G. Prothymosin α: a biologically active protein with random coil conformation. Biochemistry 1995; 34:13211-8; PMID:7548085; http://dx.doi.org/ 10.1021/bi00040a037 [PubMed] [CrossRef] [Google Scholar]

[19] Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr. NACP, a protein implicated in Alzheimer disease and learning, is natively unfolded. Biochemistry 1996; 35:13709-15; PMID:8901511; http://dx.doi.org/ 10.1021/bi961799n [PubMed] [CrossRef] [Google Scholar]

[20] Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001:89-100; PMID:11262981 [PubMed] [Google Scholar]

[21] Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42:38-48; PMID:11093259; http://dx.doi.org/ 10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3 [PubMed] [CrossRef] [Google Scholar]

[22] Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J 2007; 92:1439-56; PMID:17158572; http://dx.doi.org/ 10.1529/biophysj.106.094045 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[23] Vacic V, Uversky VN, Dunker AK, Lonardi S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 2007; 8:211; PMID:17578581; http://dx.doi.org/ 10.1186/1471-2105-8-211 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[24] Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, et al.. UniProt: the Universal protein knowledgebase. Nucleic Acids Res 2004; 32:D115-9; PMID:14681372; http://dx.doi.org/ 10.1093/nar/gkh131 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[25] Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, et al.. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539; PMID:21988835; http://dx.doi.org/ 10.1038/msb.2011.75 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[26] Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010; 1804:996-1010; PMID:20100603; http://dx.doi.org/ 10.1016/j.bbapap.2010.01.011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[27] Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005; 3:35-60; PMID:15751111; http://dx.doi.org/ 10.1142/S0219720005000886 [PubMed] [CrossRef] [Google Scholar]

[28] Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61(Suppl 7):176-82; PMID:16187360; http://dx.doi.org/ 10.1002/prot.20735 [PubMed] [CrossRef] [Google Scholar]

[29] Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-4; PMID:15955779; http://dx.doi.org/ 10.1093/bioinformatics/bti541 [PubMed] [CrossRef] [Google Scholar]

[30] Walsh I, Giollo M, Di Domenico T, Ferrari C, Zimmermann O, Tosatto SC. Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 2015; 31:201-8; PMID:25246432; http://dx.doi.org/ 10.1093/bioinformatics/btu625 [PubMed] [CrossRef] [Google Scholar]

[31] Fan X, Kurgan L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 2014; 32:448-64; PMID:23534882; http://dx.doi.org/ 10.1080/07391102.2013.775969 [PubMed] [CrossRef] [Google Scholar]

[32] Peng Z, Kurgan L. On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 2012:176-87; PMID:22174273 [PubMed] [Google Scholar]

[33] Di Domenico T, Walsh I, Martin AJ, Tosatto SC. MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 2012; 28:2080-1; PMID:22661649; http://dx.doi.org/ 10.1093/bioinformatics/bts327 [PubMed] [CrossRef] [Google Scholar]

[34] Potenza E, Domenico TD, Walsh I, Tosatto SC. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 2015; 43:D315-20; PMID:25361972 [PMC free article] [PubMed] [Google Scholar]

[35] Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 2012; 28:503-9; PMID:22190692; http://dx.doi.org/ 10.1093/bioinformatics/btr682 [PubMed] [CrossRef] [Google Scholar]

[36] Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. Protein disorder prediction: implications for structural proteomics. Structure 2003; 11:1453-9; PMID:14604535; http://dx.doi.org/ 10.1016/j.str.2003.10.002 [PubMed] [CrossRef] [Google Scholar]

[37] Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2005; 21:3369-76; PMID:15947016; http://dx.doi.org/ 10.1093/bioinformatics/bti534 [PubMed] [CrossRef] [Google Scholar]

[38] Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. Bmc Bioinformatics 2006; 7:208; http://dx.doi.org/ 10.1186/1471-2105-7-208 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[39] Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Research 2003; 31:3701-8; PMID:12824398; http://dx.doi.org/ 10.1093/nar/gkg519 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[40] Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, et al.. DisProt: the database of disordered proteins. Nucleic Acids Res 2007; 35:D786-93; PMID:17145717; http://dx.doi.org/ 10.1093/nar/gkl893 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[41] Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al.. Pfam: the protein families database. Nucleic Acids Res 2014; 42:D222-30; PMID:24288371; http://dx.doi.org/ 10.1093/nar/gkt1223 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[42] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28:235-42; PMID:10592235; http://dx.doi.org/ 10.1093/nar/28.1.235 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[43] Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, et al.. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 2013; 41:D508-16; PMID:23203878; http://dx.doi.org/ 10.1093/nar/gks1226 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[44] Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 2007; 35:W460-4; PMID:17567614; http://dx.doi.org/ 10.1093/nar/gkm363 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[45] Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al.. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011; 39:D561-8; PMID:21045058; http://dx.doi.org/ 10.1093/nar/gkq973 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[46] Alonso-Lopez D, Gutierrez MA, Lopes KP, Prieto C, Santamaria R, De Las Rivas J. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res 2016; 44(W1):W529-35; PMID:27131791 [PMC free article] [PubMed] [Google Scholar]

[47] Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, et al.. The BioGRID interaction database: 2015 update. Nucleic Acids Res 2015; 43:D470-8; PMID:25428363; http://dx.doi.org/ 10.1093/nar/gku1204 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[48] Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004; 32:D449-51; PMID:14681454; http://dx.doi.org/ 10.1093/nar/gkh086 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[49] Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al.. Human Protein Reference Database–2009 update. Nucleic Acids Res 2009; 37:D767-72; PMID:18988627; http://dx.doi.org/ 10.1093/nar/gkn892 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[50] Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, et al.. The IntAct molecular interaction database in 2012. Nucleic Acids Res 2012; 40:D841-6; PMID:22121220; http://dx.doi.org/ 10.1093/nar/gkr1088 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[51] Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, et al.. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 2012; 40:D857-61; PMID:22096227; http://dx.doi.org/ 10.1093/nar/gkr930 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[52] Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, et al.. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 2015; 162:425-40; PMID:26186194; http://dx.doi.org/ 10.1016/j.cell.2015.06.043 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[53] Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, et al.. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 2015; 43:D345-56; PMID:25428375; http://dx.doi.org/ 10.1093/nar/gku1214 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[54] Manning LR, Russell JE, Padovan JC, Chait BT, Popowicz A, Manning RS, Manning JM. Human embryonic, fetal, and adult hemoglobins have different subunit interface strengths. Correlation with lifespan in the red cell. Protein Sci 2007; 16:1641-58; PMID:17656582; http://dx.doi.org/ 10.1110/ps.072891007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[55] Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting Protein Disorder for N-, C-, and internal regions. Genome Informatics Workshop Genome Informatics 1999; 10:30-40; PMID:11072340 [PubMed] [Google Scholar]

[56] Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006; 7:208; PMID:16618368; http://dx.doi.org/ 10.1186/1471-2105-7-208 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[57] Haller JO, Berdon WE, Franke H. Sickle cell anemia: the legacy of the patient (Walter Clement Noel), the interne (Ernest Irons), and the attending physician (James Herrick) and the facts of its discovery. Pediatr Radiol 2001; 31:889-90; PMID:11727028; http://dx.doi.org/ 10.1007/s002470100014 [PubMed] [CrossRef] [Google Scholar]

[58] Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: A Plausible Model. J Mol Biol 1965; 12:88-118; PMID:14343300; http://dx.doi.org/ 10.1016/S0022-2836(65)80285-6 [PubMed] [CrossRef] [Google Scholar]

[59] Perutz MF. Stereochemistry of cooperative effects in haemoglobin. Nature 1970; 228:726-39; PMID:5528785; http://dx.doi.org/ 10.1038/228726a0 [PubMed] [CrossRef] [Google Scholar]

[60] Fan JS, Zheng Y, Choy WY, Simplaceanu V, Ho NT, Ho C, Yang D. Solution structure and dynamics of human hemoglobin in the carbonmonoxy form. Biochemistry 2013; 52:5809-20; PMID:23901897; http://dx.doi.org/ 10.1021/bi4005683 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[61] Pettigrew DW, Turner BW, Ackers GK. Subunit assembly and interactions in hormal and abnormal human hemoglobins In: Sigler PB, ed. The Molecular Basis of Mutant Hemoglobin Dysfunction. New York, Amsterdam, Oxford: Elsevier/North-Holland, Inc, 1981:191-8 [Google Scholar]

[62] Silva MM, Rogers PH, Arnone A. A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem 1992; 267:17248-56; PMID:1512262 [PubMed] [Google Scholar]

[63] Safo MK, Abraham DJ. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin. Biochemistry 2005; 44:8347-59; PMID:15938624; http://dx.doi.org/ 10.1021/bi050412q [PubMed] [CrossRef] [Google Scholar]

[64] Chu X, Wang J. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography. PLoS Comput Biol 2014; 10:e1003782; PMID:25144525; http://dx.doi.org/ 10.1371/journal.pcbi.1003782 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[65] Chu X, Gan L, Wang E, Wang J. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition. Proc Natl Acad Sci U S A 2013; 110:E2342-51; PMID:23754431; http://dx.doi.org/ 10.1073/pnas.1220699110 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[66] Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32:1037-49; PMID:14960716; http://dx.doi.org/ 10.1093/nar/gkh253 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[67] Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93; PMID:24888500; http://dx.doi.org/ 10.1002/pro.2494 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[68] Harano T, Harano K, Kushida Y, Ueda S, Kawakami H. Hb A2-Niigata [delta 1(NA1)Val—-Ala]: a new delta chain variant found in the Japanese population. Hemoglobin 1991; 15:335-9; http://dx.doi.org/ 10.3109/03630269109027889 [PubMed] [CrossRef] [Google Scholar]

[69] Ilesanmi OO. Pathological basis of symptoms and crises in sickle cell disorder: implications for counseling and psychotherapy. Hematol Rep 2010; 2:e2; PMID:22184515; http://dx.doi.org/ 10.4081/hr.2010.e2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

[70] Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337:762-9; PMID:9287233; http://dx.doi.org/ 10.1056/NEJM199709113371107 [PubMed] [CrossRef] [Google Scholar]


Page 2

Characterization of the major subunits of human hemoglobin.

   Content of the predicted disordered residues (CPDR, %) 
Protein name and UniProt IDLength (Molecular mass, Da)pIVSL2FITIUPred_sIUPred_laMeanMobiDBNAPID
α-Subunit {"type":"entrez-protein","attrs":{"text":"P69905","term_id":"57013850","term_text":"P69905"}}P69905142 (15257.55)8.7220.4211.267.040.209 ± 0.0107.758.4573
β-Subunit {"type":"entrez-protein","attrs":{"text":"P68871","term_id":"56749856","term_text":"P68871"}}P68871147 (15998.41)6.7417.6910.886.120.179 ± 0.0088.166.8054
β-Subunit E6V {"type":"entrez-protein","attrs":{"text":"P68871","term_id":"56749856","term_text":"P68871"}}P68871147 (15968.43)7.1317.0110.885.440.162 ± 0.0086.12N/AN/A
γ1-Subunit {"type":"entrez-protein","attrs":{"text":"P69891","term_id":"56749860","term_text":"P69891"}}P69891147 (16140.47)6.6418.3712.247.480.183 ± 0.0089.529.5212
γ2-Subunit {"type":"entrez-protein","attrs":{"text":"P69892","term_id":"56749861","term_text":"P69892"}}P69892147 (16126.44)6.6418.3712.248.160.190 ± 0.00810.209.5214
δ-Subunit {"type":"entrez-protein","attrs":{"text":"P02042","term_id":"122713","term_text":"P02042"}}P02042147 (16055.48)7.8422.4510.886.120.182 ± 0.0098.165.4423
ε-Subunit {"type":"entrez-protein","attrs":{"text":"P02100","term_id":"122726","term_text":"P02100"}}P02100147 (16202.82)8.6721.7712.935.440.146 ± 0.0086.806.128
ζ-Subunit {"type":"entrez-protein","attrs":{"text":"P02008","term_id":"122335","term_text":"P02008"}}P02008142 (15637.02)7.9412.6810.565.630.124 ± 0.0076.345.6329