What mechanisms occur in DIC that make it life threatening?

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;23(315):801–10.

    Article  CAS  Google Scholar 

  2. Howell MD, Davis AM. Management of sepsis and septic shock. JAMA. 2017;317:847–8.

    Article  PubMed  Google Scholar 

  3. Thiery-Antier N, Binquet C, Vinault S, Meziani F, Boisramé-Helms J, Quenot JP. Is thrombocytopenia an early prognostic marker in septic shock? Crit Care Med. 2016;44:764–72.

    PubMed  Google Scholar 

  4. Claushuis TA, van Vught LA, Scicluna BP, Wiewel MA, Klein Klouwenberg PM, Hoogendijk AJ, Ong DS, Cremer OL, Horn J, Franitza M, Toliat MR, Nürnberg P, Zwinderman AH, Bonten MJ, Schultz MJ, van der Poll T. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsispatients. Blood. 2016;127:3062–72.

    Article  CAS  PubMed  Google Scholar 

  5. de Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112:666–77.

    Article  PubMed  Google Scholar 

  6. Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 2018;16:231–41.

    Article  CAS  PubMed  Google Scholar 

  7. Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared features of endothelial dysfunction between sepsis and its preceding risk factors. J Clin Med. 2018;7:400.

    Article  PubMed Central  Google Scholar 

  8. Nishida O, Ogura H, Egi M, Fujishima S, Hayashi Y, Iba T, Imaizumi H, Inoue S, Kakihana Y, Kotani J, Kushimoto S, Masuda Y, Matsuda N, Matsushima A, Nakada TA, Nakagawa S, Nunomiya S, Sadahiro T, Shime N, Yatabe T, Hara Y, Hayashida K, Kondo Y, Sumi Y, Yasuda H, Aoyama K, Azuhata T, Doi K, Doi M, Fujimura N, Fuke R, Fukuda T, Goto K, Hasegawa R, Hashimoto S, Hatakeyama J, Hayakawa M, Hifumi T, Higashibeppu N, Hirai K, Hirose T, Ide K, Kaizuka Y, Kan'o T, Kawasaki T, Kuroda H, Matsuda A, Matsumoto S, Nagae M, Onodera M, Ohnuma T, Oshima K, Saito N, Sakamoto S, Sakuraya M, Sasano M, Sato N, Sawamura A, Shimizu K, Shirai K, Takei T, Takeuchi M, Takimoto K, Taniguchi T, Tatsumi H, Tsuruta R, Yama N, Yamakawa K, Yamashita C, Yamashita K, Yoshida T, Tanaka H, Oda S. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). Acute Med Surg. 2018;5:3–89.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Iba T, Levy JH, Wada H, Thachil J, Warkentin TE, Levi M. Differential diagnoses for sepsis-induced disseminated intravascular coagulation. J Thromb Haemost. 2018. https://doi.org/10.1111/jth.14354.

  10. Nguyen TC, Cruz MA, Carcillo JA. Thrombocytopenia-associated multiple organ failure and acute kidney injury. Crit Care Clin. 2015;31:661–74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:654–66.

    Article  CAS  PubMed  Google Scholar 

  12. Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 2001;60:831–46.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.

    Article  CAS  PubMed  Google Scholar 

  14. Gando S, Iba T, Eguchi Y, Ohtomo Y, Okamoto K, Koseki K, Mayumi T, Murata A, Ikeda T, Ishikura H, Ueyama M, Ogura H, Kushimoto S, Saitoh D, Endo S, Shimazaki S. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria. Crit Care Med. 2006;34:625–31.

    Article  PubMed  Google Scholar 

  15. Vincent JL, Castro P, Hunt BJ, Jörres A, Praga M, Rojas-Suarez J, Watanabe E. Thrombocytopenia in the ICU: disseminated intravascular coagulation and thrombotic microangiopathies-what intensivists need to know. Crit Care. 2018;22:158.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis, thrombosis and organ dysfunction. Thromb Res. 2012;129:290–5.

    Article  CAS  PubMed  Google Scholar 

  17. Liaw PC, Ito T, Iba T, Thachil J, Zeerleder S. DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 2016;30:257–61.

    Article  CAS  PubMed  Google Scholar 

  18. Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T, Ishikura H, Iba T, Ueyama M, Eguchi Y, Ohtomo Y, Okamoto K, Kushimoto S, Endo S, Shimazaki S. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: results of a multicenter, prospective survey. Crit Care Med. 2008;36:145–50.

    Article  PubMed  Google Scholar 

  19. Semeraro N, Ammollo CT, Semeraro F, Colucci M. Coagulopathy of acute Sepsis. Semin Thromb Hemost. 2015;41:650–8.

    Article  CAS  PubMed  Google Scholar 

  20. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45.

    Article  CAS  PubMed  Google Scholar 

  21. Corrigan JJ Jr, Ray WL, May N. Changes in the blood coagulation system associated with septicemia. N Engl J Med. 1968;279:851–6.

    Article  PubMed  Google Scholar 

  22. Østerud B, Bjørklid E. The tissue factor pathway in disseminated intravascular coagulation. Semin Thromb Hemost. 2001;27:605–17.

    Article  PubMed  Google Scholar 

  23. Nieman MT. Protease-activated receptors in hemostasis. Blood. 2016;128:169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma R, Xie R, Yu C, Si Y, Wu X, Zhao L, Yao Z, Fang S, Chen H, Novakovic V, Gao C, Kou J, Bi Y, Thatte HS, Yu B, Yang S, Zhou J, Shi J. Phosphatidylserine-mediated platelet clearance by endothelium decreases platelet aggregates and procoagulant activity in sepsis. Sci Rep. 2017;7:4978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44.

    Article  CAS  PubMed  Google Scholar 

  26. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347:589–600.

    Article  CAS  PubMed  Google Scholar 

  27. Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, Cheung B, Machin SJ. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158:323–35.

    Article  PubMed  Google Scholar 

  28. Wada H, Matsumoto T, Suzuki K, Imai H, Katayama N, Iba T, Matsumoto M. Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thromb J. 2018;16:14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thomas W, Cutler JA, Moore GW, McDonald V, Hunt BJ. The utility of a fast turnaround ADAMTS13 activity in the diagnosis and exclusion of thrombotic thrombocytopenic purpura. Br J Haematol. 2018. https://doi.org/10.1111/bjh.15219.

  30. Levi M, Scully M, Singer M. The role of ADAMTS-13 in the coagulopathy of sepsis. J Thromb Haemost. 2018;16:646–51.

    Article  CAS  PubMed  Google Scholar 

  31. Groot E, Fijnheer R, Sebastian SA, de Groot PG, Lenting PJ. The active conformation of von Willebrand factor in patients with thrombotic thrombocytopenic purpura in remission. J Thromb Haemost. 2009;7:962–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kremer Hovinga JA, Coppo P, Lämmle B, Moake JL, Miyata T, Vanhoorelbeke K. Thrombotic thrombocytopenic purpura. Nat Rev Dis Primers. 2017;3:17020.

    Article  PubMed  Google Scholar 

  33. Wada H, Matsumoto T, Hatada T. Diagnostic criteria and laboratory tests for disseminated intravascular coagulation. Expert Rev Hematol. 2012;5:643–52.

    Article  CAS  PubMed  Google Scholar 

  34. Wada H, Matsumoto T, Yamashita Y. Natural history of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Semin Thromb Hemost. 2014;40:866–73.

    Article  PubMed  Google Scholar 

  35. Iba T, Gando S, Thachil J. Anticoagulant therapy for sepsis-associated disseminated intravascular coagulation: the view from Japan. J Thromb Haemost. 2014;12:1010–9.

    Article  CAS  PubMed  Google Scholar 

  36. Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knöbl P, Wu H, Artoni A, Westwood JP, Mansouri Taleghani M, Jilma B, Callewaert F, Ulrichts H, Duby C, Tersago D. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374:511–22.

    Article  CAS  PubMed  Google Scholar 

  37. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Kremer Hovinga JA, Metjian A, de la Rubia J, Pavenski K, Callewaert F, Biswas D, De Winter H, Zeldin RK. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380:335–46.

    Article  CAS  PubMed  Google Scholar 

  38. Tersteeg C, Schiviz A, De Meyer SF, Plaimauer B, Scheiflinger F, Rottensteiner H, Vanhoorelbeke K. Potential for recombinant ADAMTS13 as an effective therapy for acquired thrombotic thrombocytopenic purpura. Arterioscler Thromb Vasc Biol. 2015;35:2336–42.

    Article  CAS  PubMed  Google Scholar 

  39. Talarico V, Aloe M, Monzani A, Miniero R, Bona G. Hemolytic uremic syndrome in children. Minerva Pediatr. 2016;68:441–55.

    PubMed  Google Scholar 

  40. Karmali MA. Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int J Med Microbiol. 2018;308:1067–72.

    Article  CAS  PubMed  Google Scholar 

  41. Ingelbeen B, Bruyand M, Mariani-Kurkjian P, Le Hello S, Danis K, Sommen C, Bonacorsi S, de Valk H. Emerging Shiga-toxin-producing Escherichia coli serogroup O80 associated hemolytic and uremic syndrome in France, 2013-2016: differences with other serogroups. PLoS One. 2018;13:e0207492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu F, Huang J, Sadler JE. Shiga toxin (Stx)1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signaling pathways. Blood. 2011;118:3392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noris M, Mescia F, Remuzzi G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol. 2012;8:622–33.

    Article  CAS  PubMed  Google Scholar 

  44. Kielstein JT, Beutel G, Fleig S, Steinhoff J, Meyer TN, Hafer C, Kuhlmann U, Bramstedt J, Panzer U, Vischedyk M, Busch V, Ries W, Mitzner S, Mees S, Stracke S, Nürnberger J, Gerke P, Wiesner M, Sucke B, Abu-Tair M, Kribben A, Klause N, Schindler R, Merkel F, Schnatter S, Dorresteijn EM, Samuelsson O, Brunkhorst R. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant. 2012;27:3807–15.

    Article  CAS  PubMed  Google Scholar 

  45. Jokiranta TS. HUS and atypical HUS. Blood. 2017;129:2847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spinale JM, Ruebner RL, Kaplan BS, Copelovitch L. Update on Streptococcus pneumoniae associated hemolytic uremic syndrome. Curr Opin Pediatr. 2013;25:203–8.

    Article  CAS  PubMed  Google Scholar 

  47. Meinel C, Spartà G, Dahse HM, Hörhold F, König R, Westermann M, Coldewey SM, Cseresnyés Z, Figge MT, Hammerschmidt S, Skerka C, Zipfel PF. Streptococcus pneumoniae from patients with hemolytic uremic syndrome binds human plasminogen via the surface protein PspC and uses plasmin to damage human endothelial cells. J Infect Dis. 2018;217:358–70.

    Article  CAS  PubMed  Google Scholar 

  48. Azoulay E, Knoebl P, Garnacho-Montero J, Rusinova K, Galstian G, Eggimann P, Abroug F, Benoit D, von Bergwelt-Baildon M, Wendon J, Scully M. Expert statements on the standard of care in critically ill adult patients with atypical hemolytic uremic syndrome. Chest. 2017;152:424–34.

    Article  PubMed  Google Scholar 

  49. Nester CM, Thomas CP. Atypical hemolytic uremic syndrome: what is it, how is it diagnosed, and how is it treated? Hematology Am Soc Hematol Educ Program. 2012;2012:617–25.

    PubMed  Google Scholar 

  50. Noris M, Caprioli J, Bresin E, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5:1844–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scully M, Goodship T. How I treat thrombotic thrombocytopenic purpura and atypical haemolytic uraemic syndrome. Br J Haematol. 2014;164:759–66.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fujisawa M, Kato H, Yoshida Y, Usui T, Takata M, Fujimoto M, Wada H, Uchida Y, Kokame K, Matsumoto M, Fujimura Y, Miyata T, Nangaku M. Clinical characteristics and genetic backgrounds of Japanese patients with atypical hemolyticuremic syndrome. Clin Exp Nephrol. 2018;22:1088–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, Bingham C, Cohen DJ, Delmas Y, Douglas K, Eitner F, Feldkamp T, Fouque D, Furman RR, Gaber O, Herthelius M, Hourmant M, Karpman D, Lebranchu Y, Mariat C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic- uremic syndrome. N Engl J Med. 2013;368:2169–81.

    Article  CAS  PubMed  Google Scholar 

  54. Larsen CP, Wilson JD, Best-Rocha A, Beggs ML, Hennigar RA. Genetic testing of complement and coagulation pathways in patients with severe hypertension and renal microangiopathy. Mod Pathol. 2018;31:488–94.

    Article  CAS  PubMed  Google Scholar 

  55. Cines DB, Levine LD. Thrombocytopenia in pregnancy. Hematology Am Soc Hematol Educ Program. 2017;2017:144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thomas MR, Robinson S, Scully MA. How we manage thrombotic microangiopathies in pregnancy. Br J Haematol. 2016;173:821–30.

    Article  PubMed  Google Scholar 

  57. Erez O. Disseminated intravascular coagulation in pregnancy-clinical phenotypes and diagnostic scores. Thromb Res. 2017;151:S56–60.

    Article  CAS  PubMed  Google Scholar 

  58. Abildgaard U, Heimdal K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): a review. Eur J Obstet Gynecol Reprod Biol. 2013;166:117–23.

    Article  CAS  PubMed  Google Scholar 

  59. Hulstein JJ, van Runnard Heimel PJ, Franx A, Lenting PJ, Bruinse HW, Silence K, de Groot PG, Fijnheer R. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Thromb Haemost. 2006;4:2569–75.

    Article  CAS  PubMed  Google Scholar 

  60. Haram K, Mortensen JH, Mastrolia SA, Erez O. Disseminated intravascular coagulation in the HELLP syndrome: how much do we really know? J Matern Fetal Neonatal Med. 2017;30:779–88.

    Article  CAS  PubMed  Google Scholar 

  61. Lamprecht A, Morton A, Laurie J, Lee W. Acute fatty liver of pregnancy and concomitant medical conditions: a review of cases at a quaternary obstetric hospital. Obstet Med. 2018;11:178–81.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu Z, Huang P, Gong Y, Wan J, Zou W. Treating acute fatty liver of pregnancy with artificial liver support therapy: Systematic review. Medicine. 2018;97:e12473.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Holanda MI, Pôrto LC, Wagner T, Christiani LF, Palma LMP. Use of eculizumab in a systemic lupus erythemathosus patient presenting thrombotic microangiopathy and heterozygous deletion in CFHR1-CFHR3. A case report and systematic review. Clin Rheumatol. 2017;36:2859–67.

    Article  PubMed  Google Scholar 

  64. Song D, Wu LH, Wang FM, Yang XW, Zhu D, Chen M, Yu F, Liu G, Zhao MH. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res Ther. 2013;15:R12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun F, Wang X, Wu W, Wang K, Chen Z, Li T, Ye S. TMA secondary to SLE: rituximab improves overall but not renal survival. Clin Rheumatol. 2018;37:213–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sciascia S, Radin M, Yazdany J, Tektonidou M, Cecchi I, Roccatello D, Dall'Era M. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int. 2017;37:1249–55.

    Article  CAS  PubMed  Google Scholar 

  67. Groot N, de Graeff N, Avcin T, Bader-Meunier B, Dolezalova P, Feldman B, Kenet G, Koné-Paut I, Lahdenne P, Marks SD, McCann L, Pilkington CA, Ravelli A, van Royen-Kerkhof A, Uziel Y, Vastert SJ, Wulffraat NM, Ozen S, Brogan P, Kamphuis S, Beresford MW. European evidence-based recommendations for diagnosis and treatment of paediatric antiphospholipid syndrome: the SHARE initiative. Ann Rheum Dis. 2017;76:1637–41.

    Article  CAS  PubMed  Google Scholar 

  68. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378:2010–21.

    Article  CAS  PubMed  Google Scholar 

  69. Hoxha A, Mattia E, Tonello M, Grava C, Pengo V, Ruffatti A. Antiphosphatidylserine/prothrombin antibodies as biomarkers to identify severe primary antiphospholipid syndrome. Clin Chem Lab Med. 2017;55:890–8.

    Article  CAS  PubMed  Google Scholar 

  70. Sciascia S, Sanna G, Murru V, Roccatello D, Khamashta MA, Bertolaccini ML. Anti-prothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review. Thromb Haemost. 2014;111:354–64.

    Article  CAS  PubMed  Google Scholar 

  71. Espinosa G, Rodríguez-Pintó I, Cervera R. Catastrophic antiphospholipid syndrome: an update. Panminerva Med. 2017;59:254–68.

    PubMed  Google Scholar 

  72. Legault K, Schunemann H, Hillis C, Yeung C, Akl EA, Carrier M, Cervera R, Crowther M, Dentali F, Erkan D, Espinosa G, Khamashta M, Meerpohl JJ, Moffat K, O'Brien S, Pengo V, Rand JH, Rodriguez Pinto I, Thom L, Iorio A. McMaster RARE-Bestpractices clinical practice guideline on diagnosis and management of the catastrophic antiphospholipid syndrome. J Thromb Haemost. 2018. https://doi.org/10.1111/jth.14192.

  73. Zeisbrich M, Becker N, Benner A, Radujkovic A, Schmitt K, Beimler J, Ho AD, Zeier M, Dreger P, Luft T. Transplant-associated thrombotic microangiopathy is an endothelial complication associated with refractoriness of acute GvHD. Bone Marrow Transplant. 2017;52:1399–405.

    Article  CAS  PubMed  Google Scholar 

  74. Gavriilaki E, Sakellari I, Anagnostopoulos A, Brodsky RA. Transplant-associated thrombotic microangiopathy: opening Pandora's box. Bone Marrow Transplant. 2017;52:1355–60.

    Article  CAS  PubMed  Google Scholar 

  75. Morton JM, George JN. Microangiopathic hemolytic anemia and thrombocytopenia in patients with cancer. J Oncol Pract. 2016;12:523–30.

    Article  PubMed  Google Scholar 

  76. Izzedine H, Perazella MA. Thrombotic microangiopathy, cancer, and cancer drugs. Am J Kidney Dis. 2015;66:857–68.

    Article  CAS  PubMed  Google Scholar 

  77. Kheder El-Fekih R, Deltombe C, Izzedine H. Thrombotic microangiopathy and cancer. Nephrol Ther. 2017;13:439–47.

    Article  PubMed  Google Scholar 

  78. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Al-Nouri ZL, Reese JA, Terrell DR, Vesely SK, George JN. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood. 2015;125:616–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gottschall JL, Neahring B, McFarland JG, Wu GG, Weitekamp LA, Aster RH. Quinine-induced immune thrombocytopenia with hemolytic uremic syndrome: clinical and serological findings in nine patients and review of literature. Am J Hematol. 1994;47:283–9.

    Article  CAS  PubMed  Google Scholar 

  81. Medina PJ, Sipols JM, George JN. Drug-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol. 2001;8:286–93.

    Article  CAS  PubMed  Google Scholar 

  82. Dlott JS, Danielson CF, Blue-Hnidy DE, McCarthy LJ. Drug-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a concise review. Ther Apher Dial. 2004;8:102–11.

    Article  CAS  PubMed  Google Scholar 

  83. Kleinpell R, Aitken L, Schorr CA. Implications of the new international sepsis guidelines or nursing care. Am J Crit Care. 2013;22:212–22.

    Article  PubMed  Google Scholar 

  84. Martel N, Lee J, Wells PS. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106:2710–5.

    Article  CAS  PubMed  Google Scholar 

  85. Warkentin TE. Clinical picture of heparin-induced thrombocytopenia (HIT) and its differentiation from non-HIT thrombocytopenia. Thromb Haemost. 2016;116:813–22.

    Article  PubMed  Google Scholar 

  86. Warkentin TE, Greinacher A, Gruel Y, Aster RH, Chong BH. Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Laboratory testing for heparin-induced thrombocytopenia: a conceptual framework and implications for diagnosis. J Thromb Haemost. 2011;9:2498–500.

    Article  CAS  PubMed  Google Scholar 

  87. Poudel DR, Ghimire S, Dhital R, Forman D, Warkentin TE. Spontaneous HIT syndrome post-knee replacement surgery with delayed recovery of thrombocytopenia: a case report and literature review. Platelets. 2017;28:614–20.

    Article  CAS  PubMed  Google Scholar 

  88. Warkentin TE, Greinacher A. Management of heparin-induced thrombocytopenia. Curr Opin Hematol. 2016;23:462–70.

    Article  CAS  PubMed  Google Scholar 

  89. Greinacher A, Selleng K, Warkentin TE. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost. 2017;15:2099–114.

    Article  CAS  PubMed  Google Scholar 

  90. Warkentin TE. Ischemic limb gangrene with pulses. N Engl J Med. 2015;373:642–55.

    Article  CAS  PubMed  Google Scholar 

  91. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH, Cooper N, Godeau B, Lechner K, Mazzucconi MG, McMillan R, Sanz MA, Imbach P, Blanchette V, Kühne T, Ruggeri M, George JN. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;12(113):2386–93.

    Article  CAS  Google Scholar 

  92. Liebman HA. Recognizing and treating secondary immune thrombocytopenic purpura associated with lymphoproliferative disorders. Semin Hematol. 2009;46:S33–6.

    Article  PubMed  Google Scholar 

  93. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med. 2002;346:995–1008.

    Article  PubMed  Google Scholar 

  94. Johnsen J. Pathogenesis in immune thrombocytopenia: new insights. Hematology Am Soc Hematol Educ Program. 2012;2012:306–12.

    PubMed  Google Scholar 

  95. Qu M, Liu Q, Zhao HG, Peng J, Ni H, Hou M, Jansen AJG. Low platelet count as risk factor for infections in patients with primary immune thrombocytopenia: a retrospective evaluation. Ann Hematol. 2018;97:1701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Neunert CE, Cooper N. Evidence-based management of immune thrombocytopenia: ASH guideline update. Hematology Am Soc Hematol Educ Program. 2018;2018:568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, Chong BH, Cines DB, Gernsheimer TB, Godeau B, Grainger J, Greer I, Hunt BJ, Imbach PA, Lyons G, McMillan R, Rodeghiero F, Sanz MA, Tarantino M, Watson S, Young J, Kuter DJ. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115:168–86.

    Article  CAS  PubMed  Google Scholar 

  98. Ghanima W, Godeau B, Cines DB, Bussel JB. How I treat immune thrombocytopenia: the choice between splenectomy or a medical therapy as a second-line treatment. Blood. 2012;120:960–9.

    Article  CAS  PubMed  Google Scholar 

  99. Ramachandran S, Zaidi F, Aggarwal A, Gera R. Recent advances in diagnostic and therapeutic guidelines for primary and secondary hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis. 2017;64:53–7.

    Article  PubMed  Google Scholar 

  100. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.

    Article  PubMed  Google Scholar 

  101. Kleynberg RL, Schiller GJ. Secondary hemophagocytic lymphohistiocytosis in adults: an update on diagnosis and therapy. Clin Adv Hematol Oncol. 2012;10:726–32.

    PubMed  Google Scholar 

  102. Chalmers E. Purpura fulminans: recognition, diagnosis and management. Arch Dis Child. 2011;96:1066–71.

    Article  CAS  PubMed  Google Scholar 

  103. Colling ME, Bendapudi PK. Purpura fulminans: mechanism and management of dysregulated hemostasis. Transfus Med Rev. 2018;32:69–76.

    Article  PubMed  Google Scholar 

  104. Bendapudi PK, Robbins A, LeBoeuf N, Pozdnyakova O, Bhatt A, Duke F, Sells R, McQuiston J, Humrighouse B, Rouaisnel B, Colling M, Stephenson KE, Saavedra A, Losman JA. Persistence of endothelial thrombomodulin in a patient with infectious purpura fulminans treated with protein C concentrate. Blood Adv. 2018;2(21):2917–21.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sakashita K, Murata K, Takamori M. TAFRO syndrome: current perspectives. J Blood Med. 2018;9:15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kawabata H, Takai K, Kojima M, Nakamura N, Aoki S, Nakamura S, Kinoshita T, Masaki Y. Castleman-Kojima disease (TAFRO syndrome): a novel systemic inflammatory disease characterized by a constellation of symptoms, namely, thrombocytopenia, ascites (anasarca), microcytic anemia, myelofibrosis, renal dysfunction, and organomegaly : a status report and summary of Fukushima (6 June, 2012) and Nagoya meetings (22 September, 2012). J Clin Exp Hematop. 2013;53:57–61.

    Article  PubMed  Google Scholar 

  107. Semra P. Tafro syndrome: critical review for clinicians and pathologists. Crit Rev Oncol Hematol. 2018;128:88–95.

    Article  Google Scholar 

  108. Louis C, Vijgen S, Samii K, Chalandon Y, Terriou L, Launay D, Fajgenbaum DC, Seebach JD, Muller YD. TAFRO syndrome in Caucasians: a case report and review of the literature. Front Med. 2017;4:149.

    Article  Google Scholar 

  109. Guo CT, Lu QB, Ding SJ, Hu CY, Hu JG, Wo Y, Fan YD, Wang XJ, Qin SL, Cui N, Yang ZD, Zhang XA, Liu W, Cao WC. Epidemiological and clinical characteristics of severe fever with thrombocytopeniasyndrome (SFTS) in China: an integrated data analysis. Epidemiol Infect. 2016;144:1345–54.

    Article  CAS  PubMed  Google Scholar 

  110. Oh WS, Yoo JR, Kwon KT, Kim HI, Lee SJ, Jun JB, Ryu SY, Kim HA, Hur J, Wi YM, Lim MH, Heo ST. Effect of early plasma exchange on survival in patients with severe fever with thrombocytopenia syndrome: a multicenter study. Yonsei Med J. 2017;58:867–71.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Afdhal NH, Giannini EG, Tayyab G, Mohsin A, Lee JW, Andriulli A, Jeffers L, McHutchison J, Chen PJ, Han KH, Campbell F, Hyde D, Brainsky A, Theodore D. Eltrombopag before procedures in patients with cirrhosis and thrombocytopenia. N Engl J Med. 2012;367:716–24.

    Article  CAS  PubMed  Google Scholar 

  112. Loudin M, Ahn J. Portal vein thrombosis in cirrhosis. J Clin Gastroenterol. 2017;51:579–85.

    Article  PubMed  Google Scholar 


Page 2

Category Disease Cause Clinical features Treatment
DIC Infection-induced expression of tissue factor and phosphatidylserine of the cellular membrane Thrombotic phenotype of coagulation disorder with fibrinolysis suppression Management of infectious focus, potentially anticoagulant therapy
TMA TTP (acquired) Autoantibody inhibition of ADAMTS13 activity TTP pentad (thrombocytopenia, MAHA, fluctuating neurological signs, renal impairment and fever) Plasma exchange, immunosuppressive therapy, recombinant ADAMTS13 if possible
STEC-HUS Shiga toxin-producing Escherichia coli Hemorrhagic enterocolitis, fever, thrombocytopenia, MAHA, acute kidney injury Avoiding antibiotic therapy and supportive care
aHUS Uncontrolled activity of alternative complement pathway. Thrombocytopenia, MAHA, acute kidney injury Plasma exchange, and anti-C5 monoclonal antibody (eculizumab)
Secondary TMA HELLP syndrome Inadequate placentation secondary to maternal immune response to invading trophoblast. Hemolysis, elevated liver enzymes, and low platelets Timely delivery
APS/CAPS (primary) Antiphospholipid antibodies (β2-glycoprotein I) Multiple venous and arterial thrombosis, repeated miscarriage, multi-organ failure (CAPS) Anticoagulation, glucocorticoids, plasma exchange, IVIg
HIT Platelet-activating antibodies to platelet factor 4 bound to heparin 4Ts scoring system (thrombocytopenia, the timing of onset, thrombosis, and other causes of thrombocytopenia) Discontinuation of heparin and anticoagulant therapy by argatroban
ITP IgG antibodies against GP IIb/IIIa, Ia/IIa, IV, and V Thrombocytopenia (with AIHA, kidney injury, and neurological disorder [Evans syndrome]) Thrombopoietin-receptor agonists (eltrombopag and romiplostim), steroid, IVIg, splenectomy
Others HPS (acquired) Over-produced cytokines triggered commonly by infection Fever, splenomegaly, bicytopenia, hypertriglyceridemia and/or hypofibrinogenemia, and hemophagocytosis Treatment for the underlying cause, steroid, immunosuppressive therapy
AIPF Bacteria or rickettsiae infection-induced protein C deficiency Purpura, symmetrical acral necrosis, fever, hemorrhage, and shock Treatment for the underlying infection, protein C supplementation
TAFRO Human herpesvirus 8 infection-induced interleukin-6 elevation Thrombocytopenia, anasarca, fever, reticulin fibrosis, organomegaly Steroid, anti-interleukin-6 receptor antibody (tocilizumab)
SFTS Tick-borne SFTS virus infection Fever, thrombocytopenia, leukopenia, gastrointestinal symptoms, muscular symptoms, neurological abnormalities, coagulopathy Plasma exchange, ribavirin, IVIg, steroid

  1. DIC disseminated intravascular coagulation, TMA thrombotic microangiopathy, TTP thrombotic thrombocytopenic purpura, ADAMTS13 a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13, MAHA microangiopathic hemolytic anemia, STEC Shiga toxin-producing Escherichia coli, HUS hemolytic uremic syndrome, aHUS atypical HUS, HELLP hemolysis, elevated liver enzymes low platelets, APS antiphospholipid syndrome, CAPS catastrophic antiphospholipid syndrome, IVIg intravenous immunoglobulin, HIT heparin-induced thrombocytopenia, ITP immune thrombocytopenia purpura, HPS hemophagocytic syndromes, AIPF acute infectious purpura fulminans, SFTS fever and thrombocytopenia syndrome