What is the repetition range for resistance training with beginning adults?

1. Herman J.R., Rana S.R., Chleboun G.S., Gilders R.M., Hageman F.C., Hikida R.S., Kushnick M.R., Ragg K.E., Staron R.S., Toma K. Correlation Between Muscle Fiber Cross-Sectional Area and Strength Gain Using Three Different Resistance-Training Programs In College-Aged Women. J. Strength Cond. Res. 2010;24:1. doi: 10.1097/01.JSC.0000367128.04768.0a. [CrossRef] [Google Scholar]

2. Jones E.J., Bishop P.A., Woods A.K., Green J.M. Cross-Sectional Area and Muscular Strength: A Brief Review. Sports Med. 2008;38:987–994. doi: 10.2165/00007256-200838120-00003. [PubMed] [CrossRef] [Google Scholar]

3. Hackett D.A., Johnson N.A., Chow C.M. Training Practices and Ergogenic Aids Used by Male Bodybuilders. J. Strength Cond. Res. 2013;27:1609–1617. doi: 10.1519/JSC.0b013e318271272a. [PubMed] [CrossRef] [Google Scholar]

4. Srikanthan P., Horwich T.B., Tseng C.H. Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. Am. J. Cardiol. 2016;117:1355–1360. doi: 10.1016/j.amjcard.2016.01.033. [PubMed] [CrossRef] [Google Scholar]

5. Burrows R., Correa-Burrows P., Reyes M., Blanco E., Albala C., Gahagan S. Low muscle mass is associated with cardiometabolic risk regardless of nutritional status in adolescents: A cross-sectional study in a Chilean birth cohort. Pediatr. Diabetes. 2017;18:895–902. doi: 10.1111/pedi.12505. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Son J.W., Lee S.S., Kim S.R., Yoo S.J., Cha B.Y., Son H.Y., Cho N.H. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: Findings from the KoGES. Diabetologia. 2017;60:865–872. doi: 10.1007/s00125-016-4196-9. [PubMed] [CrossRef] [Google Scholar]

7. Damas F., Libardi C.A., Ugrinowitsch C. The development of skeletal muscle hypertrophy through resistance training: The role of muscle damage and muscle protein synthesis. Eur. J. Appl. Physiol. 2018;118:485–500. doi: 10.1007/s00421-017-3792-9. [PubMed] [CrossRef] [Google Scholar]

8. Phillips S.M. A Brief Review of Critical Processes in Exercise-Induced Muscular Hypertrophy. Sports Med. 2014;44:71–77. doi: 10.1007/s40279-014-0152-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Bird S.P., Tarpenning K.M., Marino F.E. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005;35:841–851. doi: 10.2165/00007256-200535100-00002. [PubMed] [CrossRef] [Google Scholar]

10. Ralston G.W., Kilgore L., Wyatt F.B., Buchan D., Baker J.S. Weekly Training Frequency Effects on Strength Gain: A Meta-Analysis. Sports Med. Open. 2018;4:36. doi: 10.1186/s40798-018-0149-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Schoenfeld B.J., Peterson M.D., Ogborn D., Contreras B., Sonmez G.T. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J. Strength Cond. Res. 2015;29:2954–2963. doi: 10.1519/JSC.0000000000000958. [PubMed] [CrossRef] [Google Scholar]

12. Schoenfeld B.J., Ogborn D., Krieger J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017;35:1073–1082. doi: 10.1080/02640414.2016.1210197. [PubMed] [CrossRef] [Google Scholar]

13. American College of Sports Medicine American College of Sports Medicine Position Stand Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009;41:687–708. doi: 10.1249/MSS.0b013e3181915670. [PubMed] [CrossRef] [Google Scholar]

14. Burd N.A., West D.W.D., Staples A.W., Atherton P.J., Baker J.M., Moore D.R., Holwerda A.M., Parise G., Rennie M.J., Baker S.K., et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE. 2010;5:e12033. doi: 10.1371/journal.pone.0012033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Mitchell C.J., Churchward-Venne T.A., West D.W.D., Burd N.A., Breen L., Baker S.K., Phillips S.M. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. 2012;113:71–77. doi: 10.1152/japplphysiol.00307.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Wernbom M., Järrebring R., Andreasson M.A., Augustsson J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 2009;23:2389–2395. doi: 10.1519/JSC.0b013e3181bc1c2a. [PubMed] [CrossRef] [Google Scholar]

17. Sampson J.A., Groeller H. Is repetition failure critical for the development of muscle hypertrophy and strength? Failure is not necessary for strength gain. Scand. J. Med. Sci. Sports. 2016;26:375–383. doi: 10.1111/sms.12445. [PubMed] [CrossRef] [Google Scholar]

18. Ogasawara R., Loenneke J.P., Thiebaud R.S., Abe T. Low-Load Bench Press Training to Fatigue Results in Muscle Hypertrophy Similar to High-Load Bench Press Training. Int. J. Clin. Med. 2013;4:114–121. doi: 10.4236/ijcm.2013.42022. [CrossRef] [Google Scholar]

19. Helms E.R., Byrnes R.K., Cooke D.M., Haischer M.H., Carzoli J.P., Johnson T.K., Cross M.R., Cronin J.B., Storey A.G., Zourdos M.C. RPE vs. Percentage 1RM Loading in Periodized Programs Matched for Sets and Repetitions. Front. Physiol. 2018;9:247. doi: 10.3389/fphys.2018.00247. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Schoenfeld B.J., Contreras B., Krieger J., Grgic J., Delcastillo K., Belliard R., Alto A. Resistance Training Volume Enhances Muscle Hypertrophy. Med. Sci. Sports Exerc. 2019;51:94. doi: 10.1249/MSS.0000000000001764. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Wolfe B.L., Lemura L.M., Cole P.J. Quantitative analysis of single- vs, multiple-set programs in resistence training. J. Strength Cond. Res. 2004;18:35–47. [PubMed] [Google Scholar]

22. Terzis G., Spengos K., Mascher H., Georgiadis G., Manta P., Blomstrand E. The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur. J. Appl. Physiol. 2010;110:835–843. doi: 10.1007/s00421-010-1527-2. [PubMed] [CrossRef] [Google Scholar]

23. Krieger J.W. Single vs. Multiple Sets of Resistance Exercise for Muscle Hypertrophy: A Meta-Analysis. J. Strength Cond. Res. 2010;24:1150–1159. doi: 10.1519/JSC.0b013e3181d4d436. [PubMed] [CrossRef] [Google Scholar]

24. Counts B.R., Buckner S.L., Mouser J.G., Dankel S.J., Jessee M.B., Mattocks K.T., Loenneke J.P. Muscle growth: To infinity and beyond?: Muscle Hypertrophy Time Course. Muscle Nerve. 2017;56:1022–1030. doi: 10.1002/mus.25696. [PubMed] [CrossRef] [Google Scholar]

25. Wilk M., Golas A., Stastny P., Nawrocka M., Krzysztofik M., Zajac A. Does Tempo of Resistance Exercise Impact Training Volume? J. Hum. Kinet. 2018;62:241–250. doi: 10.2478/hukin-2018-0034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Hatfield D.L., Kraemer W.J., Spiering B.A., Häkkinen K., Volek J.S., Shimano T., Spreuwenberg L.P.B., Silvestre R., Vingren J.L., Fragala M.S., et al. The impact of velocity of movement on performance factors in resistance exercise. J. Strength Cond. Res. 2006;20:760–766. [PubMed] [Google Scholar]

27. Sakamoto A., Sinclair P.J. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. J. Strength Cond. Res. 2006;20:523–527. [PubMed] [Google Scholar]

28. Burd N.A., Andrews R.J., West D.W.D., Little J.P., Cochran A.J.R., Hector A.J., Cashaback J.G.A., Gibala M.J., Potvin J.R., Baker S.K., et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 2012;590:351–362. doi: 10.1113/jphysiol.2011.221200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Shibata K., Takizawa K., Nosaka K., Mizuno M. Effects of Prolonging Eccentric Phase Duration in Parallel Back-Squat Training to Momentary Failure on Muscle Cross-Sectional Area, Squat One Repetition Maximum, and Performance Tests in University Soccer Players. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002838. Ahead of Print. [PubMed] [CrossRef] [Google Scholar]

30. English K.L., Loehr J.A., Lee S.M.C., Smith S.M. Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training. Eur. J. Appl. Physiol. 2014;114:2263–2280. doi: 10.1007/s00421-014-2951-5. [PubMed] [CrossRef] [Google Scholar]

31. Brandenburg J.P., Docherty D. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J. Strength Cond. Res. 2002;16:25–32. [PubMed] [Google Scholar]

32. Walker S., Blazevich A.J., Haff G.G., Tufano J.J., Newton R.U., Häkkinen K. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men. Front. Physiol. 2016;7:149. doi: 10.3389/fphys.2016.00149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Friedmann-Bette B., Bauer T., Kinscherf R., Vorwald S., Klute K., Bischoff D., Müller H., Weber M.A., Metz J., Kauczor H.-U., et al. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur. J. Appl. Physiol. 2010;108:821–836. doi: 10.1007/s00421-009-1292-2. [PubMed] [CrossRef] [Google Scholar]

34. Loenneke J.P., Balapur A., Thrower A.D., Barnes J., Pujol T.J. Blood flow restriction reduces time to muscular failure. Eur. J. Sport Sci. 2012;12:238–243. doi: 10.1080/17461391.2010.551420. [CrossRef] [Google Scholar]

35. Kubo K., Komuro T., Ishiguro N., Tsunoda N., Sato Y., Ishii N., Kanehisa H., Fukunaga T. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J. Appl. Biomech. 2006;22:112–119. doi: 10.1123/jab.22.2.112. [PubMed] [CrossRef] [Google Scholar]

36. Lowery R.P., Joy J.M., Loenneke J.P., de Souza E.O., Machado M., Dudeck J.E., Wilson J.M. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin. Physiol. Funct. Imaging. 2014;34:317–321. doi: 10.1111/cpf.12099. [PubMed] [CrossRef] [Google Scholar]

37. Farup J., de Paoli F., Bjerg K., Riis S., Ringgard S., Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand. J. Med. Sci. Sports. 2015;25:754–763. doi: 10.1111/sms.12396. [PubMed] [CrossRef] [Google Scholar]

38. Ellefsen S., Hammarström D., Strand T.A., Zacharoff E., Whist J.E., Rauk I., Nygaard H., Vegge G., Hanestadhaugen M., Wernbom M., et al. Blood flow-restricted strength training displays high functional and biological efficacy in women: A within-subject comparison with high-load strength training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;309:R767–R779. doi: 10.1152/ajpregu.00497.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Laurentino G.C., Ugrinowitsch C., Roschel H., Aoki M.S., Soares A.G., Neves M., Aihara A.Y., Fernandes Ada R.C., Tricoli V. Strength training with blood flow restriction diminishes myostatin gene expression. Med. Sci. Sports Exerc. 2012;44:406–412. doi: 10.1249/MSS.0b013e318233b4bc. [PubMed] [CrossRef] [Google Scholar]

40. Lixandrão M.E., Ugrinowitsch C., Laurentino G., Libardi C.A., Aihara A.Y., Cardoso F.N., Tricoli V., Roschel H. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur. J. Appl. Physiol. 2015;115:2471–2480. doi: 10.1007/s00421-015-3253-2. [PubMed] [CrossRef] [Google Scholar]

41. Yamanaka T., Farley R.S., Caputo J.L. Occlusion Training Increases Muscular Strength in Division IA Football Players. J. Strength Cond. Res. 2012;26:2523–2529. doi: 10.1519/JSC.0b013e31823f2b0e. [PubMed] [CrossRef] [Google Scholar]

42. Cook S.B., Scott B.R., Hayes K.L., Murphy B.G. Neuromuscular Adaptations to Low-Load Blood Flow Restricted Resistance Training. J. Sports Sci. Med. 2018;17:66–73. [PMC free article] [PubMed] [Google Scholar]

43. Yasuda T., Ogasawara R., Sakamaki M., Bemben M.G., Abe T. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training: Effect of BFR training on trunk muscle size. Clin. Physiol. Funct. Imaging. 2011;31:347–351. doi: 10.1111/j.1475-097X.2011.01022.x. [PubMed] [CrossRef] [Google Scholar]

44. Oliver J.M., Kreutzer A., Jenke S., Phillips M.D., Mitchell J.B., Jones M.T. Acute response to cluster sets in trained and untrained men. Eur. J. Appl. Physiol. 2015;115:2383–2393. doi: 10.1007/s00421-015-3216-7. [PubMed] [CrossRef] [Google Scholar]

45. Iglesias-Soler E., Carballeira E., Sánchez-Otero T., Mayo X., Fernández-del-Olmo M. Performance of Maximum Number of Repetitions with Cluster-Set Configuration. Int. J. Sport Physiol. 2014;9:637–642. doi: 10.1123/ijspp.2013-0246. [PubMed] [CrossRef] [Google Scholar]

46. Tufano J.J., Conlon J.A., Nimphius S., Brown L.E., Banyard H.G., Williamson B.D., Bishop L.G., Hopper A.J., Haff G.G. Cluster Sets: Permitting Greater Mechanical Stress Without Decreasing Relative Velocity. Int. J. Sports Physiol. 2017;12:463–469. doi: 10.1123/ijspp.2015-0738. [PubMed] [CrossRef] [Google Scholar]

47. Wallace W., Ugrinowitsch C., Stefan M., Rauch J., Barakat C., Shields K., Barninger A., Barroso R., De Souza E.O. Repeated Bouts of Advanced Strength Training Techniques: Effects on Volume Load, Metabolic Responses, and Muscle Activation in Trained Individuals. Sports. 2019;7:14. doi: 10.3390/sports7010014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Robbins D.W., Young W.B., Behm D.G. The Effect of an Upper-Body Agonist-Antagonist Resistance Training Protocol on Volume Load and Efficiency. J. Strength Cond. Res. 2010;24:2632–2640. doi: 10.1519/JSC.0b013e3181e3826e. [PubMed] [CrossRef] [Google Scholar]

49. Weakley J.J.S., Till K., Read D.B., Roe G.A.B., Darrall-Jones J., Phibbs P.J., Jones B. The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. Eur. J. Appl. Physiol. 2017;117:1877–1889. doi: 10.1007/s00421-017-3680-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Soares E.G., Brown L.E., Gomes W.A., Corrêa D.A., Serpa É.P., da Silva J.J., Junior G.D., Fioravanti G.Z., Aoki M.S., Lopes C.R., et al. Comparison Between Pre-Exhaustion and Traditional Exercise Order on Muscle Activation and Performance in Trained Men. J. Sports Sci. Med. 2016;15:111–117. [PMC free article] [PubMed] [Google Scholar]

51. Fink J., Schoenfeld B.J., Kikuchi N., Nakazato K. Effects of drop set resistance training on acute stress indicators and long-term muscle hypertrophy and strength. J. Sports Med. Phys. Fit. 2017;58:597–605. doi: 10.23736/S0022-4707.17.06838-4. [PubMed] [CrossRef] [Google Scholar]

52. Angleri V., Ugrinowitsch C., Libardi C.A. Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men. Eur. J. Appl. Physiol. 2017;117:359–369. doi: 10.1007/s00421-016-3529-1. [PubMed] [CrossRef] [Google Scholar]

53. De Almeida F.N., Lopes C.R., Conceição R.M., Oenning L., Crisp A.H., de Sousa N.M.F., Trindade T.B., Willardson J.M., Prestes J. Acute Effects of the New Method Sarcoplasma Stimulating Training Versus Traditional Resistance Training on Total Training Volume, Lactate and Muscle Thickness. Front. Physiol. 2019;10:579. doi: 10.3389/fphys.2019.00579. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Ozaki H., Kubota A., Natsume T., Loenneke J.P., Abe T., Machida S., Naito H. Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: A pilot study. J. Sports Sci. 2018;36:691–696. doi: 10.1080/02640414.2017.1331042. [PubMed] [CrossRef] [Google Scholar]

55. Schoenfeld B.J. The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 2010;24:2857–2872. doi: 10.1519/JSC.0b013e3181e840f3. [PubMed] [CrossRef] [Google Scholar]

56. Haun C.T., Vann C.G., Mobley C.B., Roberson P.A., Osburn S.C., Holmes H.M., Mumford P.M., Romero M.A., Young K.C., Moon J.R., et al. Effects of Graded Whey Supplementation During Extreme-Volume Resistance Training. Front. Nutr. 2018;5:84. doi: 10.3389/fnut.2018.00084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Schoenfeld B.J. Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training. Sports Med. 2013;43:179–194. doi: 10.1007/s40279-013-0017-1. [PubMed] [CrossRef] [Google Scholar]

58. Ikezoe T., Kobayashi T., Nakamura M., Ichihashi N. Effects of low-load, higher-repetition versus high-load, lower-repetition resistance training not performed to failure on muscle strength, mass, and echo intensity in healthy young men: A time-course study. J. Strength Cond. Res. 2017 doi: 10.1519/JSC.0000000000002278. [PubMed] [CrossRef] [Google Scholar]

59. Lasevicius T., Ugrinowitsch C., Schoenfeld B.J., Roschel H., Tavares L.D., De Souza E.O., Laurentino G., Tricoli V. Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur. J Sport Sci. 2018;18:772–780. doi: 10.1080/17461391.2018.1450898. [PubMed] [CrossRef] [Google Scholar]

60. Schoenfeld B.J., Ogborn D.I., Krieger J.W. Effect of repetition duration during resistance training on muscle hypertrophy: A systematic review and meta-analysis. Sports Med. 2015;45:577–585. doi: 10.1007/s40279-015-0304-0. [PubMed] [CrossRef] [Google Scholar]

61. Hoppeler H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front. Physiol. 2016;7:483. doi: 10.3389/fphys.2016.00483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Douglas J., Pearson S., Ross A., McGuigan M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017;47:917–941. doi: 10.1007/s40279-016-0628-4. [PubMed] [CrossRef] [Google Scholar]

63. Franchi M.V., Reeves N.D., Narici M.V. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol. 2017;8:447. doi: 10.3389/fphys.2017.00447. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Narici M., Franchi M., Maganaris C. Muscle structural assembly and functional consequences. J. Exp. Biol. 2016;219:276–284. doi: 10.1242/jeb.128017. [PubMed] [CrossRef] [Google Scholar]

65. Gehlert S., Suhr F., Gutsche K., Willkomm L., Kern J., Jacko D., Knicker A., Schiffer T., Wackerhage H., Bloch W. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflug. Arch. Eur. J. Physiol. 2015;467:1343–1356. doi: 10.1007/s00424-014-1579-y. [PubMed] [CrossRef] [Google Scholar]

66. Loenneke J.P., Pujol T.J. The Use of Occlusion Training to Produce Muscle Hypertrophy. Strength Cond. J. 2009;31:77–84. doi: 10.1519/SSC.0b013e3181a5a352. [CrossRef] [Google Scholar]

67. Wilk M., Krzysztofik M., Gepfert M., Poprzecki S., Gołaś A., Maszczyk A. Technical and Training Related Aspects of Resistance Training Using Blood Flow Restriction in Competitive Sport—A Review. J. Hum. Kinet. 2018;65:249–260. doi: 10.2478/hukin-2018-0101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Scott B.R., Loenneke J.P., Slattery K.M., Dascombe B.J. Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Med. 2015;45:313–325. doi: 10.1007/s40279-014-0288-1. [PubMed] [CrossRef] [Google Scholar]

69. Patterson S.D., Hughes L., Warmington S., Burr J., Scott B.R., Owens J., Abe T., Nielsen J.L., Libardi C.A., Laurentino G., et al. Blood Flow Restriction Exercise Position Stand: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019;10:533. doi: 10.3389/fphys.2019.00533. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Tufano J.J., Conlon J.A., Nimphius S., Brown L.E., Seitz L.B., Williamson B.D., Haff G.G. Maintenance of Velocity and Power with Cluster Sets During High-Volume Back Squats. Int. J. Sport Physiol. 2016;11:885–892. doi: 10.1123/ijspp.2015-0602. [PubMed] [CrossRef] [Google Scholar]

71. Tufano J.J., Conlon J.A., Nimphius S., Brown L.E., Petkovic A., Frick J., Gregory Haff G. Effects of Cluster Sets and Rest-Redistribution on Mechanical Responses to Back Squats in Trained Men. J. Hum. Kinet. 2017;58:35–43. doi: 10.1515/hukin-2017-0069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Kelleher A.R., Hackney K.J., Fairchild T.J., Keslacy S., Ploutz-Snyder L.L. The Metabolic Costs of Reciprocal Supersets vs. Traditional Resistance Exercise in Young Recreationally Active Adults. J. Strength Cond. Res. 2010;24:1043–1051. doi: 10.1519/JSC.0b013e3181d3e993. [PubMed] [CrossRef] [Google Scholar]

73. Fleck S.J., Kraemer W.J. Designing Resistance Training Programs. 4th ed. Human Kinetics; Champaign, IL, USA: 2014. [Google Scholar]

74. Ribeiro A.S., Nunes J.P., Cunha P.M., Aguiar A.F., Schoenfeld B.J. Potential Role of Pre-Exhaustion Training in Maximizing Muscle Hypertrophy: A Review of the Literature. Strength Cond. J. 2019;41:75–80. doi: 10.1519/SSC.0000000000000418. [CrossRef] [Google Scholar]

75. Golas A., Maszczyk A., Pietraszewski P., Stastny P., Tufano J.J., Zając A. Effects of Pre-exhaustion on the Patterns of Muscular Activity in the Flat Bench Press. J. Strength Cond. Res. 2017;31:1919–1924. doi: 10.1519/JSC.0000000000001755. [PubMed] [CrossRef] [Google Scholar]

76. Schoenfeld B. The Use of Specialized Training Techniques to Maximize Muscle Hypertrophy. Strength Cond. J. 2011;33:60–65. doi: 10.1519/SSC.0b013e3182221ec2. [CrossRef] [Google Scholar]