What is the probability of flipping a coin twice and getting heads and then tails or tails and then heads?

Here we will learn how to find the probability of tossing two coins.

Let us take the experiment of tossing two coins simultaneously:

When we toss two coins simultaneously then the possible of outcomes are: (two heads) or (one head and one tail) or (two tails) i.e., in short (H, H) or (H, T) or (T, T) respectively; where H is denoted for head and T is denoted for tail.

Therefore, total numbers of outcome are 22 = 4

The above explanation will help us to solve the problems on finding the probability of tossing two coins.

Worked-out problems on probability involving tossing or flipping two coins:

1. Two different coins are tossed randomly. Find the probability of:

(i) getting two heads

(ii) getting two tails

(iii) getting one tail

(iv) getting no head

(v) getting no tail

(vi) getting at least 1 head

(vii) getting at least 1 tail

(viii) getting atmost 1 tail

(ix) getting 1 head and 1 tail

Solution:

When two different coins are tossed randomly, the sample space is given by

S = {HH, HT, TH, TT}

Therefore, n(S) = 4.

(i) getting two heads:

Let E1 = event of getting 2 heads. Then,
E1 = {HH} and, therefore, n(E1) = 1.
Therefore, P(getting 2 heads) = P(E1) = n(E1)/n(S) = 1/4.

(ii) getting two tails:

Let E2 = event of getting 2 tails. Then,
E2 = {TT} and, therefore, n(E2) = 1.
Therefore, P(getting 2 tails) = P(E2) = n(E2)/n(S) = 1/4.

(iii) getting one tail:

Let E3 = event of getting 1 tail. Then,
E3 = {TH, HT} and, therefore, n(E3) = 2.
Therefore, P(getting 1 tail) = P(E3) = n(E3)/n(S) = 2/4 = 1/2

(iv) getting no head:

Let E4 = event of getting no head. Then,
E4 = {TT} and, therefore, n(E4) = 1.
Therefore, P(getting no head) = P(E4) = n(E4)/n(S) = ¼.

(v) getting no tail:

Let E5 = event of getting no tail. Then,
E5 = {HH} and, therefore, n(E5) = 1.
Therefore, P(getting no tail) = P(E5) = n(E5)/n(S) = ¼.

(vi) getting at least 1 head:

Let E6 = event of getting at least 1 head. Then,
E6 = {HT, TH, HH} and, therefore, n(E6) = 3.
Therefore, P(getting at least 1 head) = P(E6) = n(E6)/n(S) = ¾.

(vii) getting at least 1 tail:

Let E7 = event of getting at least 1 tail. Then,
E7 = {TH, HT, TT} and, therefore, n(E7) = 3.
Therefore, P(getting at least 1 tail) = P(E2) = n(E2)/n(S) = ¾.

(viii) getting atmost 1 tail:

Let E8 = event of getting atmost 1 tail. Then,
E8 = {TH, HT, HH} and, therefore, n(E8) = 3.
Therefore, P(getting atmost 1 tail) = P(E8) = n(E8)/n(S) = ¾.

(ix) getting 1 head and 1 tail:

Let E9 = event of getting 1 head and 1 tail. Then,
E9 = {HT, TH } and, therefore, n(E9) = 2.
Therefore, P(getting 1 head and 1 tail) = P(E9) = n(E9)/n(S)= 2/4 = 1/2.

The solved examples involving probability of tossing two coins will help us to practice different questions provided in the sheets for flipping 2 coins.

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice

9th Grade Math

From Probability of Tossing Two Coins to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

The probability of some event happening is a mathematical (numerical) representation of how likely it is to happen, where a probability of 1 means that an event will always happen, while a probability of 0 means that it will never happen. Classical probability problems often need to you find how often one outcome occurs versus another, and how one event happening affects the probability of future events happening. When you look at all the things that may occur, the formula (just as our coin flip probability formula) states that

probability = (no. of successful results) / (no. of all possible results).

Take a die roll as an example. If you have a standard, 6-face die, then there are six possible outcomes, namely the numbers from 1 to 6. If it is a fair die, then the likelihood of each of these results is the same, i.e., 1 in 6 or 1 / 6. Therefore, the probability of obtaining 6 when you roll the die is 1 / 6. The probability is the same for 3. Or 2. You get the drill. If you don't believe me, take a dice and roll it a few times and note the results. Remember that the more times you repeat an experiment, the more trustworthy the results. So go on, roll it, say, a thousand times. We'll be waiting here until you get back to tell us we've been right all along. Go to the dice probability calculator if you want a shortcut.

But what if you repeat an experiment a hundred times and want to find the odds that you'll obtain a fixed result at least 20 times?

Let's look at another example. Say that you're a teenager straight out of middle school and decide that you want to meet the love of your life this year. More specifically, you want to ask ten girls out and go on a date with only four of them. One of those has got to be the one, right? The first thing you have to do in this situation is look in the mirror and rate how likely a girl is to agree to go out with you when you start talking to her. If you have problems with assessing your looks fairly, go downstairs and let your grandma tell you what a handsome, young gentleman you are. So a solid 9 / 10 then.

As you only want to go on four dates, that means you only want four of your romance attempts to succeed. This has an outcome of 9 / 10. This means that you want the other six girls to reject you, which, based on your good looks, has only a 1 / 10 change of happening (The sum of all events happening is always equal to 1, so we get this number by subtracting 9 / 10 from 1). If you multiply the probability of each event by itself the number of times you want it to occur, you get the chance that your scenario will come true. In this case, your odds are 210 * (9 / 10)4 * (1 / 10)6 = 0.000137781, where the 210 comes from the number of possible fours of girls among the ten that would agree. Not very likely to happen, is it? Maybe you should try being less beautiful!

You are confusing the terms "independent" and "mutually exclusive".  These are not the same thing.  In fact events cannot be both "independent" and "mutually exclusive".  It's either one, the other, or neither.

"Mutually exclusive" simply means that the two events cannot happen together. If A happens then B does not and if B happens A does not.

"Independent" simply means that the occurrence of one event is not conditional on the occurrence of the other. The probability of A happening does not depend on whether B happens or not, and vice versa.

Let $H_n$ be the indexed event of getting a head on the $n^{th}$ flip.

Given an unbiased coin, $P(H_1)=P(H_2)=\frac 1 2$

These events are independent so $P(H_1 \cap H_2) = P(H_1)\times P(H_2)$.  The outcome of one coin toss does not influence the outcome of the other.

However they are not mutually exclusive, so $P(H_1 \cup H_2) = P(H_1)+P(H_2) - P(H_1 \cap H_2)$.  Both coins can turn up heads.

Putting it together: $$\therefore P(H_1 \cup H_2) = \frac 12 + \frac 1 2 - \frac 12 \times \frac 12 = \frac 3 4$$

Solution:

Given a coin is tossed twice

To find the probability that both are heads

ASSUMPTIONS WE NEED TO RECOGNISE:

The coin is FAIR, that is not biased in any manner such that if the coin is flipped a lot of times, an equal number of HEADS and TAILS will result

FACTS WE NEED TO UNDERSTAND:

When we toss a coin we get either a HEAD or a TAIL. The Probability of either is the same, which is 0.5 or 50%.

Each flip of the coin is an INDEPENDENT EVENT, that is the outcome of any coin flip, has no impact whatsoever on the outcome of any other coin flip. Putting that another way, we cannot predict the outcome of a coin flip based on the outcome of any previous flip.

ANALYSIS:

P(First coin flip = HEADS) = 0.5 = 50%

P(Second coin flip = HEADS) = 0.5 = 50% (not dependent on the previous coin flip)

∴P(Both Coin Flips = HEADS) = (0.5)*(0.5) or (1/2)*(1/2) = (1/4) = (0.25) = 25%

Another approach:

If we tabulate the possibilities of the outcomes of the two coin flips we get:

Flip 1 Flip 2
H H
H T
T H
T T

Note that each of the four combinations is equally likely as P(HEADS) = P(TAILS) = 0.5

There are 4 possible outcomes shown, being (H, H), (H, T), (T, H), and (T, T).

Only one option is of the four is (HEADS, HEADS), so P(FLIP 1 and FLIP 2 = HEADS, HEADS) = (1/4) = 0.25 = 25%

Summary:

When we flip a coin twice, the Probability of both coin flips returning HEADS is 0.25 or 25%

Toplist

Latest post

TAGs