What is intrinsic solubility of drug

1. Lachman L, Lieberman H, Kanig JL. The Theory And Practise of Industrial Pharmacy. 3rd edition. Lea & Febiger; 1986. [Google Scholar]

2. Clugston M, Fleming R. Advanced Chemistry. 1st edition. Oxford, UK: Oxford Publishing; 2000. [Google Scholar]

3. Myrdal PB, Yalkowsky SH. Solubilization of drugs in aqueous media. In: Swarbrick J, editor. Encyclopedia of Pharmaceutical Technology. 3rd edition. New York, NY, USA, : Informa Health Care; 2007. p. p. 3311. [Google Scholar]

4. Martin A. Solubility and Distribution Phenomena. 6th edition. Lippincott Williams and Wilkins; 2011. (Physical Pharmacy and Pharmaceutical Sciences). [Google Scholar]

5. IUPAC gold book. http://goldbook.iupac.org/S05740.html.

6. Aulton M. Dissolution and solubility. In: Aulton ME, editor. Pharmaceutics: The Science of Dosage form Design. 2nd edition. Churchill Livingstone; 2002. p. p. 15. [Google Scholar]

7. The United States Pharmacopeia, USP 30-NF 25, 2007.

8. British Pharmacopoeia, 2009.

9. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research. 1995;12(3):413–420. [PubMed] [Google Scholar]

10. Yellela SRK. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. Journal of Bioequivalence & Bioavailability. 2010;2(2):28–36. [Google Scholar]

11. Edward KH, Li D. Drug Like Properties: Concept, Structure, Design and Methods, from ADME to Toxicity Optimization. Elsevier; 2008. Solubility; p. p. 56. [Google Scholar]

12. Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. International Journal of Pharmaceutical Sciences Review and Research. 2010;5(1):41–51. [Google Scholar]

13. Sharma D, Soni M, Kumar S, Gupta GD. Solubility enhancement—eminent role in poorly soluble drugs. Research Journal of Pharmacy and Technology. 2009;2(2):220–224. [Google Scholar]

14. Kumar A, Sahoo SK, Padhee K, Kochar PS, Sathapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharmacie Globale. 2011;3(3):001–007. [Google Scholar]

15. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews. 2007;59(7):617–630. [PubMed] [Google Scholar]

16. Vogt M, Kunath K, Dressman JB. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. European Journal of Pharmaceutics and Biopharmaceutics. 2008;68(2):283–288. [PubMed] [Google Scholar]

17. Chaumeil JC. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods and Findings in Experimental and Clinical Pharmacology. 1998;20(3):211–215. [PubMed] [Google Scholar]

18. Sekiguchi K, Obi N. Studies on absorption of eutectic mixtures. I.A. comparison of the behaviour of eutectic mixtures of sulphathiazole and that of ordinary sulphathiazole in man. Chemical and Pharmaceutical Bulletin. 1961;9:866–872. [Google Scholar]

19. Gupta P, Kakumanu VK, Bansal AK. Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharmaceutical Research. 2004;21(10):1762–1769. [PubMed] [Google Scholar]

20. Abdul-Fattah AM, Bhargava HN. Preparation and in vitro evaluation of solid dispersions of halofantrine. International Journal of Pharmaceutics. 2002;235(1-2):17–33. [PubMed] [Google Scholar]

21. Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech. 2010;11(2):518–527. [PMC free article] [PubMed] [Google Scholar]

22. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences. 1971;60(9):1281–1302. [PubMed] [Google Scholar]

23. Tachibana T, Nakamura A. A methode for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion of β-carotene by polyvinylpyrrolidone. Colloid and Polymer Science. 1965;203(2):130–133. [Google Scholar]

24. Nanosuspension drug delivery technology and application—nanotech—express pharma pulse.htm. http://www.expresspharmapulse.com/

25. Muller RH, Jacobs C, Kayer O. Nanosuspensions for the formulation of poorly soluble drugs. In: Nielloud F, Marti-Mestres G, editors. Pharmaceutical Emulsion and Suspension. New York, NY, USA: Marcel Dekker; 2000. pp. 383–407. [Google Scholar]

26. Nash RA. Suspensions. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. 2nd edition. Vol. 3. New York, NY, USA: Marcel Dekker; 2002. pp. 2045–3032. [Google Scholar]

27. Chowdary KPR, Madhavi BLR. Novel drug delivery technologies for insoluble drugs. Indian Drugs. 2005;42(9):557–564. [Google Scholar]

28. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy and Pharmacology. 2004;56(7):827–840. [PubMed] [Google Scholar]

29. Muller RH, Bohm BHL, Grau J. Nanosuspensions: a formulation approach for poorly soluble and poorly bioavailable drugs. In: Wise D, editor. Handbook of Pharmaceutical Controlled Release Technology. 2000. pp. 345–357. [Google Scholar]

30. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences. 2003;18(2):113–120. [PubMed] [Google Scholar]

31. Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. International Journal of Pharmaceutics. 1995;125(2):309–313. [Google Scholar]

32. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics. 2006;62(1):3–16. [PubMed] [Google Scholar]

33. Langguth P, Hanafy A, Frenzel D, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Development and Industrial Pharmacy. 2005;31(3):319–329. [PubMed] [Google Scholar]

34. Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharmaceutical Research. 2002;19(2):189–194. [PubMed] [Google Scholar]

35. Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. European Journal of Pharmaceutics and Biopharmaceutics. 2004;58(3):615–619. [PubMed] [Google Scholar]

36. Sunkara G, Kompella UB. Drug delivery applications of supercritical fluid technology. Drug Delivery Technology. 2002;2:44–50. [Google Scholar]

37. Manna L, Banchero M, Sola D, Ferri A, Ronchetti S, Sicardi S. Impregnation of PVP microparticles with ketoprofen in the presence of supercritical CO2 . Journal of Supercritical Fluids. 2007;42(3):378–384. [Google Scholar]

38. Leuenberger H. Spray freeze-drying—the process of choice for low water soluble drugs? Journal of Nanoparticle Research. 2002;4(1-2):111–119. [Google Scholar]

39. Mumenthaler M, Leuenberger H. Atmospheric spray-freeze drying: a suitable alternative in freeze-drying technology. International Journal of Pharmaceutics. 1991;72(2):97–110. [Google Scholar]

40. Williams RQ. Process for production of nanoparticles and microparticles by spray freezing into liquid. US Patent no. 20030041602, 2003.

41. Briggs AR, Maxvell TJ. Process for preparing powder blends. US Patent no. 3721725, 1973.

42. Rogers TL, Hu J, Yu Z, Johnston KP, Williams RO. A novel particle engineering technology: spray-freezing into liquid. International Journal of Pharmaceutics. 2002;242(1-2):93–100. [PubMed] [Google Scholar]

43. Buxton IR, Peach JM. Process and apparatus for freezing a liquid medium. US Patent no. 4470202, 1984.

44. Cyclodextrins in pharmaceuticals: an overview. http://www.pharmainfo.net/pharma-student-magazine/cyclodextrins-pharmaceuticals-overview-0.

45. Purvis T, Mattucci ME, Crisp MT, Johnston KP, Williams RO. Rapidly dissolving repaglinide powders producers by the ultra-rapid freezing process. AAPS PharmSciTech. 2007;8(3, article 58) [PubMed] [Google Scholar]

46. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chemical Reviews. 1998;98(5):2045–2076. [PubMed] [Google Scholar]

47. http://www.nature.com/nrd/journal/v3/n12/fig_tab/nrd1576_F3.html.

48. Parikh RK, Mansuri NS, Gohel MC, Soniwala MM. Dissolution enhancement of nimesulide using complexation and salt formation techniques. Indian Drugs. 2005;42(3):149–154. [Google Scholar]

49. Cao F, Guo J, Ping Q. The physicochemical characteristics of freeze-dried scutellarin- cyclodextrin tetracomponent complexes. Drug Development and Industrial Pharmacy. 2005;31(8):747–756. [PubMed] [Google Scholar]

50. Wen X, Tan F, Jing Z, Liu Z. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis. 2004;34(3):517–523. [PubMed] [Google Scholar]

51. Martin A. Physical Pharmacy. 4th edition. Baltimore, Md, USA: Willaims and Wilkins; 1993. [Google Scholar]

52. Rangel-Yagui CD, Pessoa A, Tavares LC. Micellar solubilization of drugs. Journal of Pharmacy and Pharmaceutical Sciences. 2005;8(2):147–163. [PubMed] [Google Scholar]

53. Hsu CH, Cui Z, Mumper RJ, Jay M. Micellar solubilization of some poorly soluble antidiabetic drugs. AAPS PharmSciTech. 2008;9(2):939–943. [Google Scholar]

54. Rasool AA, Hussain AA, Dittert LW. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. Journal of Pharmaceutical Sciences. 1991;80(4):387–393. [PubMed] [Google Scholar]

55. Badwan AA, El Khordagui LK, Saleh AM, Khalil SA. The solubility of benzodiazepines in sodium salicylate solution and a proposed mechanism for hydrotropic solubilization. International Journal of Pharmaceutics. 1983;13(1):67–74. [Google Scholar]

56. Roy BK, Moulik SP. Functions of hydrotropes (sodium salicylate, proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors. Colloids and Surfaces A. 2002;203(1–3):155–166. [Google Scholar]

57. Patil SV, Sahoo SK. Pharmaceutical overview of spherical crystallization. Der Pharmacia Lettre. 2010;2(1):421–426. [Google Scholar]

58. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews. 2007;59(7):617–630. [PubMed] [Google Scholar]

59. Aguiar AJ, Krc J, Kinkel AW, Samyn JC. Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. Journal of Pharmaceutical Sciences. 1967;56(7):847–853. [PubMed] [Google Scholar]

60. Liebenberg W, De Villiers MM, Wurster DE, Swanepoel E, Dekker TG, Lötter AP. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders. Drug Development and Industrial Pharmacy. 1999;25(9):1027–1033. [PubMed] [Google Scholar]

61. Suleiman MS, Najib NM. Isolation and physicochemical characterization of solid forms of glibenclamide. International Journal of Pharmaceutics. 1989;50(2):103–109. [Google Scholar]

62. Shefter E, Higuchi T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. Journal of Pharmaceutical Sciences. 1963;52:781–791. [PubMed] [Google Scholar]

63. Allen PV, Rahn PD, Sarapu AC, Vanderwielen AJ. Physical characterization of erythromycin: anhydrate, monohydrate, and dihydrate crystalline solids. Journal of Pharmaceutical Sciences. 1978;67(8):1087–1093. [PubMed] [Google Scholar]

64. Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. Journal of Pharmaceutical Sciences. 2006;95(3):499–516. [PubMed] [Google Scholar]

65. Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discovery Today. 2008;13(9-10):440–446. [PubMed] [Google Scholar]

66. Hickey MB, Peterson ML, Scoppettuolo LA, et al. Performance comparison of a co-crystal of carbamazepine with marketed product. European Journal of Pharmaceutics and Biopharmaceutics. 2007;67(1):112–119. [PubMed] [Google Scholar]

67. Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. Journal of the American Chemical Society. 2004;126(41):13335–13342. [PubMed] [Google Scholar]

68. Remenar JF, Morissette SL, Peterson ML, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. Journal of the American Chemical Society. 2003;125(28):8456–8457. [PubMed] [Google Scholar]

69. Moribe K, Tozuka Y, Yamamoto K. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Advanced Drug Delivery Reviews. 2008;60(3):328–338. [PubMed] [Google Scholar]

70. Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Advanced Drug Delivery Reviews. 2008;60(3):399–410. [PubMed] [Google Scholar]

71. Paradkar A, Maheshwari M, Kamble R, Grimsey I, York P. Design and evaluation of celecoxib porous particles using melt sonocrystallization. Pharmaceutical Research. 2006;23(6):1395–1400. [PubMed] [Google Scholar]


Page 2

USP and BP solubility criteria.

Descriptive termPart of solvent required per part of solute
Very solubleLess than 1
Freely solubleFrom 1 to 10
SolubleFrom 10 to 30
Sparingly solubleFrom 30 to 100
Slightly solubleFrom 100 to 1000
Very slightly solubleFrom 1000 to 10,000
Practically insoluble10,000 and over