What are the three most important factors that dictate the rate of glycogen utilization during exercise?

  1. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Sahlin, K., Tonkonogi, M. & Söderlund, K. Energy supply and muscle fatigue in humans. Acta Physiol. Scand. 162, 261–266 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Medbø, J. I. & Tabata, I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J. Appl. Physiol. 75, 1654–1660 (1993).

    Article  PubMed  Google Scholar 

  4. Parolin, M. L. et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 277, E890–E900 (1999).

    CAS  PubMed  Google Scholar 

  5. Greenhaff, P. L. et al. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. (Lond.) 478, 149–155 (1994).

    Article  Google Scholar 

  6. Medbø, J. I. & Tabata, I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol. 67, 1881–1886 (1989).

    Article  PubMed  Google Scholar 

  7. Tesch, P. A., Colliander, E. B. & Kaiser, P. Muscle metabolism during intense, heavy-resistance exercise. Eur. J. Appl. Physiol. Occup. Physiol. 55, 362–366 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Koopman, R. et al. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur. J. Appl. Physiol. 96, 525–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Hawley, J. A. & Leckey, J. J. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 45 (Suppl. 1), S5–S12 (2015).

    Article  PubMed  Google Scholar 

  10. O’Brien, M. J., Viguie, C. A., Mazzeo, R. S. & Brooks, G. A. Carbohydrate dependence during marathon running. Med. Sci. Sports Exerc. 25, 1009–1017 (1993).

    PubMed  Google Scholar 

  11. Romijn, J. A. et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265, E380–E391 (1993).

    CAS  PubMed  Google Scholar 

  12. van Loon, L. J., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H. & Wagenmakers, A. J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. (Lond.) 536, 295–304 (2001).

    Article  Google Scholar 

  13. Bergström, J. & Hultman, E. A study of the glycogen metabolism during exercise in man. Scand. J. Clin. Lab. Invest. 19, 218–228 (1967).

    Article  PubMed  Google Scholar 

  14. Wahren, J., Felig, P., Ahlborg, G. & Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50, 2715–2725 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R. & Wahren, J. Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53, 1080–1090 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watt, M. J., Heigenhauser, G. J. F., Dyck, D. J. & Spriet, L. L. Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. J. Physiol. (Lond.) 541, 969–978 (2002).

    Article  CAS  Google Scholar 

  17. van Loon, L. J. et al. Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. Am. J. Physiol. Endocrinol. Metab. 289, E482–E493 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. Wasserman, D. H. Four grams of glucose. Am. J. Physiol. Endocrinol. Metab. 296, E11–E21 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Coggan, A. R., Swanson, S. C., Mendenhall, L. A., Habash, D. L. & Kien, C. L. Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men. Am. J. Physiol. 268, E375–E383 (1995).

    CAS  PubMed  Google Scholar 

  20. Coyle, E. F. et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J. Appl. Physiol. 55, 230–235 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Horowitz, J. F. & Klein, S. Lipid metabolism during endurance exercise. Am. J. Clin. Nutr. 72 (Suppl. 2), 558S–563S (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kiens, B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol. Rev. 86, 205–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Stellingwerff, T. et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies. Am. J. Physiol. Endocrinol. Metab. 292, E1715–E1723 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Spriet, L. L., Howlett, R. A. & Heigenhauser, G. J. F. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 32, 756–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Brooks, G. A. The lactate shuttle during exercise and recovery. Med. Sci. Sports Exerc. 18, 360–368 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Miller, B. F. et al. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J. Physiol. (Lond.) 544, 963–975 (2002).

    Article  CAS  Google Scholar 

  27. Medbø, J. I., Jebens, E., Noddeland, H., Hanem, S. & Toska, K. Lactate elimination and glycogen resynthesis after intense bicycling. Scand. J. Clin. Lab. Invest. 66, 211–226 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Hashimoto, T., Hussien, R., Oommen, S., Gohil, K. & Brooks, G. A. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 21, 2602–2612 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi, H. et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab 1, 291–303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rennie, M. J. et al. Effect of exercise on protein turnover in man. Clin. Sci. (Lond.) 61, 627–639 (1981).

    Article  CAS  Google Scholar 

  32. Wagenmakers, A. J. M. et al. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am. J. Physiol. 260, E883–E890 (1991).

    CAS  PubMed  Google Scholar 

  33. Howarth, K. R. et al. Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. J. Appl. Physiol. 109, 431–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. McKenzie, S. et al. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am. J. Physiol. Endocrinol. Metab. 278, E580–E587 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Wilkinson, S. B. et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. (Lond.) 586, 3701–3717 (2008).

    Article  CAS  Google Scholar 

  36. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Spriet, L. L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 44 (Suppl. 1), S87–S96 (2014).

    Article  PubMed  Google Scholar 

  38. Hargreaves, M. & Spriet, L. L. Exercise metabolism: fuels for the fire. Cold Spring Harb. Perspect. Med. 8, a029744 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Richter, E. A., Ruderman, N. B., Gavras, H., Belur, E. R. & Galbo, H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am. J. Physiol. 242, E25–E32 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Gaitanos, G. C., Williams, C., Boobis, L. H. & Brooks, S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 75, 712–719 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Kowalchuk, J. M., Heigenhauser, G. J., Lindinger, M. I., Sutton, J. R. & Jones, N. L. Factors influencing hydrogen ion concentration in muscle after intense exercise. J. Appl. Physiol. 65, 2080–2089 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Howlett, R. A. et al. Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am. J. Physiol. 275, R418–R425 (1998).

    CAS  PubMed  Google Scholar 

  43. Wojtaszewski, J. F., Nielsen, P., Hansen, B. F., Richter, E. A. & Kiens, B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J. Physiol. (Lond.) 528, 221–226 (2000).

    Article  CAS  Google Scholar 

  44. Chen, Z.-P. et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am. J. Physiol. Endocrinol. Metab. 279, E1202–E1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Stephens, T. J. et al. Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am. J. Physiol. Endocrinol. Metab. 282, E688–E694 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Yu, M. et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J. Physiol. (Lond.) 546, 327–335 (2003).

    Article  CAS  Google Scholar 

  47. Rose, A. J. & Hargreaves, M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J. Physiol. (Lond.) 553, 303–309 (2003).

    Article  CAS  Google Scholar 

  48. McConell, G. K. It’s well and truly time to stop stating that AMPK regulates glucose uptake and fat oxidation during exercise. Am. J. Physiol. Endocrinol. Metab. 318, E564–E567 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nelson, M. E. et al. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J. 38, e102578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Needham, E. J. et al. Phosphoproteomics of acute cell stressors targeting exercise signaling networks reveal drug interactions regulating protein secretion. Cell Rep. 29, 1524–1538.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Perry, C. G. R. et al. Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle. J. Physiol. (Lond.) 590, 5475–5486 (2012).

    Article  CAS  Google Scholar 

  53. Miotto, P. M. & Holloway, G. P. In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport. Biochem. J. 473, 2831–2843 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Holloway, G. P. Nutrition and training influences on the regulation of mitochondrial adenosine diphosphate sensitivity and bioenergetics. Sports Med. 47, 13–21 (2017). Suppl 1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Watt, M. J., Heigenhauser, G. J. F. & Spriet, L. L. Effects of dynamic exercise intensity on the activation of hormone-sensitive lipase in human skeletal muscle. J. Physiol. (Lond.) 547, 301–308 (2003).

    Article  CAS  Google Scholar 

  56. Talanian, J. L. et al. Beta-adrenergic regulation of human skeletal muscle hormone sensitive lipase activity during exercise onset. Am. J. Physiol. 291, R1094–R1099 (2006).

    CAS  Google Scholar 

  57. Richter, E. A. & Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 93, 993–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Sylow, L., Kleinert, M., Richter, E. A. & Jensen, T. E. Exercise-stimulated glucose uptake: regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 13, 133–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Holloway, G. P. et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J. Physiol. (Lond.) 571, 201–210 (2006).

    Article  CAS  Google Scholar 

  60. Bradley, N. S. et al. Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 302, E183–E189 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Smith, B. K. et al. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem. J. 437, 125–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Smith, B. K., Bonen, A. & Holloway, G. P. A dual mechanism of action for skeletal muscle FAT/CD36 during exercise. Exerc. Sport Sci. Rev. 40, 211–217 (2012).

    Article  PubMed  Google Scholar 

  63. Petrick, H. L. & Holloway, G. P. High intensity exercise inhibits carnitine palmitoyltransferase-I sensitivity to L-carnitine. Biochem. J. 476, 547–558 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Krustrup, P. et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med. Sci. Sports Exerc. 38, 1165–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Achten, J. & Jeukendrup, A. E. Maximal fat oxidation during exercise in trained men. Int. J. Sports Med. 24, 603–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Harris, R. C. et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 367, 137–142 (1976).

    Article  CAS  PubMed  Google Scholar 

  67. Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R. & Rice, C. L. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med. Sci. Sports Exerc. 48, 2294–2306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Amann, M. Central and peripheral fatigue: interaction during cycling exercise in humans. Med. Sci. Sports Exerc. 43, 2039–2045 (2011).

    Article  PubMed  Google Scholar 

  70. Burke, L. M. & Hawley, J. A. Swifter, higher, stronger: what’s on the menu? Science 362, 781–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Hawley, J. A., Burke, L. M., Phillips, S. M. & Spriet, L. L. Nutritional modulation of training-induced skeletal muscle adaptations. J. Appl. Physiol. 110, 834–845 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Maughan, R. J. et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br. J. Sports Med. 52, 439–455 (2018).

    Article  PubMed  Google Scholar 

  73. Roberts, A. D., Billeter, R. & Howald, H. Anaerobic muscle enzyme changes after interval training. Int. J. Sports Med. 3, 18–21 (1982).

    Article  CAS  PubMed  Google Scholar 

  74. Sharp, R. L., Costill, D. L., Fink, W. J. & King, D. S. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity. Int. J. Sports Med. 7, 13–17 (1986).

    Article  CAS  PubMed  Google Scholar 

  75. Weston, A. R. et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 75, 7–13 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. McKenna, M. J., Heigenhauser, G. J. F., McKelvie, R. S., MacDougall, J. D. & Jones, N. L. Sprint training enhances ionic regulation during intense exercise in men. J. Physiol. (Lond.) 501, 687–702 (1997).

    Article  CAS  Google Scholar 

  77. Gibala, M. J., Little, J. P., Macdonald, M. J. & Hawley, J. A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. (Lond.) 590, 1077–1084 (2012).

    Article  CAS  Google Scholar 

  78. Lundby, C., Montero, D. & Joyner, M. Biology of VO2 max: looking under the physiology lamp. Acta Physiol. (Oxf.) 220, 218–228 (2017).

    Article  CAS  Google Scholar 

  79. Amann, M. & Calbet, J. A. Convective oxygen transport and fatigue. J. Appl. Physiol. 104, 861–870 (2008).

    Article  PubMed  Google Scholar 

  80. Holloszy, J. O. & Coyle, E. F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 56, 831–838 (1984).

    Article  CAS  PubMed  Google Scholar 

  81. Chesley, A., Heigenhauser, G. J. & Spriet, L. L. Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am. J. Physiol. 270, E328–E335 (1996).

    CAS  PubMed  Google Scholar 

  82. Leblanc, P. J., Howarth, K. R., Gibala, M. J. & Heigenhauser, G. J. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J. Appl. Physiol. 97, 2148–2153 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Coyle, E. F., Coggan, A. R., Hopper, M. K. & Walters, T. J. Determinants of endurance in well-trained cyclists. J. Appl. Physiol. 64, 2622–2630 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Westgarth-Taylor, C. et al. Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 75, 298–304 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Seynnes, O. R., de Boer, M. & Narici, M. V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 102, 368–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Harris, R. C., Söderlund, K. & Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. (Lond.) 83, 367–374 (1992).

    Article  CAS  Google Scholar 

  87. Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G. & Greenhaff, P. L. Muscle creatine loading in men. J. Appl. Physiol. 81, 232–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Greenhaff, P. L. et al. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin. Sci. (Lond.) 84, 565–571 (1993).

    Article  CAS  Google Scholar 

  89. Casey, A., Constantin-Teodosiu, D., Howell, S., Hultman, E. & Greenhaff, P. L. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am. J. Physiol. 271, E31–E37 (1996).

    CAS  PubMed  Google Scholar 

  90. Vandenberghe, K. et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 83, 2055–2063 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Hermansen, L., Hultman, E. & Saltin, B. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 71, 129–139 (1967).

    Article  CAS  PubMed  Google Scholar 

  92. Ørtenblad, N., Westerblad, H. & Nielsen, J. Muscle glycogen stores and fatigue. J. Physiol. 591, 4405–4413 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Matsui, T. et al. Brain glycogen decreases during prolonged exercise. J. Physiol. (Lond.) 589, 3383–3393 (2011).

    CAS  Google Scholar 

  94. Bergström, J., Hermansen, L., Hultman, E. & Saltin, B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 71, 140–150 (1967).

    Article  PubMed  Google Scholar 

  95. Hawley, J. A., Schabort, E. J., Noakes, T. D. & Dennis, S. C. Carbohydrate-loading and exercise performance: an update. Sports Med. 24, 73–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Balsom, P. D., Gaitanos, G. C., Söderlund, K. & Ekblom, B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol. Scand. 165, 337–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Coyle, E. F., Coggan, A. R., Hemmert, M. K. & Ivy, J. L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 61, 165–172 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Coggan, A. R. & Coyle, E. F. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J. Appl. Physiol. 63, 2388–2395 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. Hargreaves, M. & Briggs, C. A. Effect of carbohydrate ingestion on exercise metabolism. J. Appl. Physiol. 65, 1553–1555 (1988).

    Article  CAS  PubMed  Google Scholar 

  100. Jeukendrup, A. E. et al. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am. J. Physiol. 276, E672–E683 (1999).

    CAS  PubMed  Google Scholar 

  101. McConell, G., Fabris, S., Proietto, J. & Hargreaves, M. Effect of carbohydrate ingestion on glucose kinetics during exercise. J. Appl. Physiol. 77, 1537–1541 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Nybo, L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med. Sci. Sports Exerc. 35, 589–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Snow, R. J., Carey, M. F., Stathis, C. G., Febbraio, M. A. & Hargreaves, M. Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J. Appl. Physiol. 88, 1576–1580 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Chambers, E. S., Bridge, M. W. & Jones, D. A. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J. Physiol. (Lond.) 587, 1779–1794 (2009).

    Article  CAS  Google Scholar 

  105. Costill, D. L. et al. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J. Appl. Physiol. 43, 695–699 (1977).

    Article  CAS  PubMed  Google Scholar 

  106. Vukovich, M. D. et al. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J. Appl. Physiol. 75, 1513–1518 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Odland, L. M., Heigenhauser, G. J., Wong, D., Hollidge-Horvat, M. G. & Spriet, L. L. Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am. J. Physiol. 274, R894–R902 (1998).

    CAS  PubMed  Google Scholar 

  108. Phinney, S. D., Bistrian, B. R., Evans, W. J., Gervino, E. & Blackburn, G. L. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32, 769–776 (1983).

    Article  CAS  PubMed  Google Scholar 

  109. Burke, L. M. et al. Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J. Appl. Physiol. 89, 2413–2421 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Havemann, L. et al. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J. Appl. Physiol. 100, 194–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Stellingwerff, T. et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am. J. Physiol. Endocrinol. Metab. 290, E380–E388 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Burke, L. M. et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. (Lond.) 595, 2785–2807 (2017).

    Article  CAS  Google Scholar 

  113. Paoli, A., Bianco, A. & Grimaldi, K. A. The ketogenic diet and sport: a possible marriage. Exerc. Sport Sci. Rev. 43, 153–162 (2015).

    Article  PubMed  Google Scholar 

  114. Kiens, B. & Astrup, A. Ketogenic diets for fat loss and exercise performance: benefits and safety? Exerc. Sport Sci. Rev. 43, 109 (2015).

    Article  PubMed  Google Scholar 

  115. Helge, J. W., Richter, E. A. & Kiens, B. Interaction of training and diet on metabolism and endurance during exercise in man. J. Physiol. (Lond.) 492, 293–306 (1996).

    Article  CAS  Google Scholar 

  116. Yeo, W. K. et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J. Appl. Physiol. 105, 1462–1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Hulston, C. J. et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med. Sci. Sports Exerc. 42, 2046–2055 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Kirwan, J. P. et al. Carbohydrate balance in competitive runners during successive days of intense training. J. Appl. Physiol. 65, 2601–2606 (1988).

    Article  CAS  PubMed  Google Scholar 

  119. Cox, P. J. et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 24, 256–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Shaw, D. M., Merien, F., Braakhuis, A., Maunder, E. & Dulson, D. K. Exogenous ketone supplementation and keto-adaptation for endurance performance: disentangling the effects of two distinct metabolic states. Sports Med. 50, 641–656 (2020).

    Article  PubMed  Google Scholar 

  121. Evans, M., McSwiney, F. T., Brady, A. J. & Egan, B. No benefit of ingestion of a ketone monoester supplement on 10-km running performance. Med. Sci. Sports Exerc. 51, 2506–2515 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Prins, P. J. et al. Effects of an exogenous ketone supplement on five-kilometer running performance. J. Hum. Kinet. 72, 115–127 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dearlove, D. J., Faull, O. K., Rolls, E., Clarke, K. & Cox, P. J. Nutritional ketoacidosis during incremental exercise in healthy athletes. Front. Physiol. 10, 290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Leckey, J. J., Ross, M. L., Quod, M., Hawley, J. A. & Burke, L. M. Ketone diester ingestion impairs time-trial performance in professional cyclists. Front. Physiol. 8, 806 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Costill, D. L., Dalsky, G. P. & Fink, W. J. Effects of caffeine ingestion on metabolism and exercise performance. Med. Sci. Sports 10, 155–158 (1978).

    CAS  PubMed  Google Scholar 

  126. Graham, T. E. & Spriet, L. L. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J. Appl. Physiol. 71, 2292–2298 (1991).

    Article  CAS  PubMed  Google Scholar 

  127. Spriet, L. L. et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am. J. Physiol. 262, E891–E898 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Graham, T. E., Helge, J. W., MacLean, D. A., Kiens, B. & Richter, E. A. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J. Physiol. (Lond.) 529, 837–847 (2000).

    Article  CAS  Google Scholar 

  129. Graham, T. E. & Spriet, L. L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Appl. Physiol. 78, 867–874 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Desbrow, B. et al. The effects of different doses of caffeine on endurance cycling time trial performance. J. Sports Sci. 30, 115–120 (2012).

    Article  PubMed  Google Scholar 

  131. Cole, K. J. et al. Effect of caffeine ingestion on perception of effort and subsequent work production. Int. J. Sport Nutr. 6, 14–23 (1996).

    Article  PubMed  Google Scholar 

  132. Kalmar, J. M. & Cafarelli, E. Caffeine: a valuable tool to study central fatigue in humans? Exerc. Sport Sci. Rev. 32, 143–147 (2004).

    Article  PubMed  Google Scholar 

  133. Spriet, L. L. Exercise and sport performance with low doses of caffeine. Sports Med. 44, S175–S184 (2014). Suppl 2.

    Article  PubMed  Google Scholar 

  134. Wickham, K. A. & Spriet, L. L. Administration of caffeine in alternate forms. Sports Med. 48, 79–91 (2018). Suppl 1.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Barnett, C. et al. Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. Int. J. Sport Nutr. 4, 280–288 (1994).

    Article  CAS  PubMed  Google Scholar 

  136. Stephens, F. B., Evans, C. E., Constantin-Teodosiu, D. & Greenhaff, P. L. Carbohydrate ingestion augments L-carnitine retention in humans. J. Appl. Physiol. 102, 1065–1070 (2007a).

    Article  CAS  PubMed  Google Scholar 

  137. Wall, B. T. et al. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J. Physiol. (Lond.) 589, 963–973 (2011).

    Article  CAS  Google Scholar 

  138. Stephens, F. B. et al. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans. J. Physiol. (Lond.) 591, 4655–4666 (2013).

    Article  CAS  Google Scholar 

  139. Stephens, F. B., Constantin-Teodosiu, D., Laithwaite, D., Simpson, E. J. & Greenhaff, P. L. A threshold exists for the stimulatory effect of insulin on plasma L-carnitine clearance in humans. Am. J. Physiol. Endocrinol. Metab. 292, E637–E641 (2007b).

    Article  CAS  PubMed  Google Scholar 

  140. Larsen, F. J., Weitzberg, E., Lundberg, J. O. & Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. (Oxf.) 191, 59–66 (2007).

    Article  CAS  Google Scholar 

  141. Bailey, S. J. et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 107, 1144–1155 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Bailey, S. J. et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 109, 135–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Lansley, K. E. et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 43, 1125–1131 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Boorsma, R. K., Whitfield, J. & Spriet, L. L. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med. Sci. Sports Exerc. 46, 2326–2334 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Nyakayiru, J. M. et al. No effect of acute and 6-day nitrate supplementation on VO2 and time-trial performance in highly trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 27, 11–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Jones, A. M., Thompson, C., Wylie, L. J. & Vanhatalo, A. Dietary nitrate and physical performance. Annu. Rev. Nutr. 38, 303–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Whitfield, J. et al. Beetroot juice increases human muscle force without changing Ca2+-handling proteins. Med. Sci. Sports Exerc. 49, 2016–2024 (2017).

    Article  PubMed  Google Scholar 

  148. Coggan, A. R. & Peterson, L. R. Dietary nitrate enhances the contractile properties of human skeletal muscle. Exerc. Sport Sci. Rev. 46, 254–261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Whitfield, J. et al. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle. J. Physiol. (Lond.) 594, 421–435 (2016).

    Article  CAS  Google Scholar 

  150. Larsen, F. J. et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 13, 149–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Ntessalen, M. et al. Inorganic nitrate and nitrite supplementation fails to improve skeletal muscle mitochondrial efficiency in mice and humans. Am. J. Clin. Nutr. 111, 79–89 (2020).

    Article  PubMed  Google Scholar 

  152. Sahlin, K. & Ren, J.-M. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J. Appl. Physiol. 67, 648–654 (1989).

    Article  CAS  PubMed  Google Scholar 

  153. Sutton, J. R., Jones, N. L. & Toews, C. J. Effect of pH on muscle glycolysis during exercise. Clin. Sci. (Lond.) 61, 331–338 (1981).

    Article  CAS  Google Scholar 

  154. Wilkes, D., Gledhill, N. & Smyth, R. Effect of acute induced metabolic alkalosis on 800-m racing time. Med. Sci. Sports Exerc. 15, 277–280 (1983).

    Article  CAS  PubMed  Google Scholar 

  155. Costill, D. L., Verstappen, F., Kuipers, H., Janssen, E. & Fink, W. Acid-base balance during repeated bouts of exercise: influence of HCO3. Int. J. Sports Med. 5, 228–231 (1984).

    Article  CAS  PubMed  Google Scholar 

  156. Hollidge-Horvat, M. G., Parolin, M. L., Wong, D., Jones, N. L. & Heigenhauser, G. J. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am. J. Physiol. Endocrinol. Metab. 278, E316–E329 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Street, D., Nielsen, J. J., Bangsbo, J. & Juel, C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J. Physiol. (Lond.) 566, 481–489 (2005).

    Article  CAS  Google Scholar 

  158. Sostaric, S. M. et al. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J. Physiol. (Lond.) 570, 185–205 (2006).

    Article  CAS  Google Scholar 

  159. Parkhouse, W. S., McKenzie, D. C., Hochachka, P. W. & Ovalle, W. K. Buffering capacity of deproteinized human vastus lateralis muscle. J. Appl. Physiol. 58, 14–17 (1985).

    Article  CAS  PubMed  Google Scholar 

  160. Derave, W. et al. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J. Appl. Physiol. 103, 1736–1743 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Hill, C. A. et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32, 225–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Powers, S. K. & Jackson, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 1243–1276 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Merry, T. L. & Ristow, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. (Lond.) 594, 5135–5147 (2016).

    Article  CAS  Google Scholar 

  164. McKenna, M. J. et al. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J. Physiol. (Lond.) 576, 279–288 (2006).

    Article  CAS  Google Scholar 

  165. Petersen, A. C. et al. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiol. (Oxf.) 204, 382–392 (2012).

    Article  CAS  Google Scholar 

  166. Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA 106, 8665–8670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nybo, L. Hyperthermia and fatigue. J. Appl. Physiol. 104, 871–878 (2008).

    Article  PubMed  Google Scholar 

  168. González-Alonso, J., Mora-Rodríguez, R., Below, P. R. & Coyle, E. F. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J. Appl. Physiol. 82, 1229–1236 (1997).

    Article  PubMed  Google Scholar 

  169. González-Alonso, J., Calbet, J. A. & Nielsen, B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J. Physiol. (Lond.) 520, 577–589 (1999a).

    Article  Google Scholar 

  170. Fink, W. J., Costill, D. L. & Van Handel, P. J. Leg muscle metabolism during exercise in the heat and cold. Eur. J. Appl. Physiol. Occup. Physiol. 34, 183–190 (1975).

    Article  CAS  PubMed  Google Scholar 

  171. Febbraio, M. A. et al. Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J. Appl. Physiol. 76, 589–597 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Febbraio, M. A., Snow, R. J., Stathis, C. G., Hargreaves, M. & Carey, M. F. Blunting the rise in body temperature reduces muscle glycogenolysis during exercise in humans. Exp. Physiol. 81, 685–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  173. González-Alonso, J. et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J. Appl. Physiol. 86, 1032–1039 (1999b).

    Article  PubMed  Google Scholar 

  174. Hargreaves, M., Dillo, P., Angus, D. & Febbraio, M. Effect of fluid ingestion on muscle metabolism during prolonged exercise. J. Appl. Physiol. 80, 363–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  175. Logan-Sprenger, H. M., Heigenhauser, G. J. F., Killian, K. J. & Spriet, L. L. Effects of dehydration during cycling on skeletal muscle metabolism in females. Med. Sci. Sports Exerc. 44, 1949–1957 (2012).

    Article  PubMed  Google Scholar 

  176. Costill, D. L. et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J. Appl. Physiol. 40, 149–154 (1976).

    Article  CAS  PubMed  Google Scholar 

  177. Costill, D. L., Fink, W. J., Getchell, L. H., Ivy, J. L. & Witzmann, F. A. Lipid metabolism in skeletal muscle of endurance-trained males and females. J. Appl. Physiol. 47, 787–791 (1979).

    Article  CAS  PubMed  Google Scholar 

  178. Horton, T. J., Pagliassotti, M. J., Hobbs, K. & Hill, J. O. Fuel metabolism in men and women during and after long-duration exercise. J. Appl. Physiol. 85, 1823–1832 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Friedlander, A. L. et al. Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J. Appl. Physiol. 85, 1175–1186 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Tarnopolsky, L. J., MacDougall, J. D., Atkinson, S. A., Tarnopolsky, M. A. & Sutton, J. R. Gender differences in substrate for endurance exercise. J. Appl. Physiol. 68, 302–308 (1990).

    Article  CAS  PubMed  Google Scholar 

  181. Carter, S. L., Rennie, C. & Tarnopolsky, M. A. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metab. 280, E898–E907 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Roepstorff, C. et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am. J. Physiol. Endocrinol. Metab. 282, E435–E447 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Roepstorff, C. et al. Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J. Physiol. (Lond.) 574, 125–138 (2006).

    Article  CAS  Google Scholar 

  184. Hamadeh, M. J., Devries, M. C. & Tarnopolsky, M. A. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J. Clin. Endocrinol. Metab. 90, 3592–3599 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Hackney, A. C., McCracken-Compton, M. A. & Ainsworth, B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int. J. Sport Nutr. 4, 299–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  186. Zderic, T. W., Coggan, A. R. & Ruby, B. C. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J. Appl. Physiol. 90, 447–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Devries, M. C., Hamadeh, M. J., Phillips, S. M. & Tarnopolsky, M. A. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1120–R1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Frandsen, J. et al. Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test. J. Appl. Physiol. 128, 681–687 (2020).

    Article  CAS  PubMed  Google Scholar 

Page 2

Contributions of PCr (light green), glycolysis (medium green) and oxidative phosphorylation (dark green) to ATP turnover during maximal exercise. Muscle samples were obtained before and during 30 s of all-out cycling exercise. Dw, dry weight. Adapted with permission from ref. 4, American Physiological Society.

Toplist

Latest post

TAGs