Plants that convert energy from the sun are also called

We know that plants are producers, which means that they are able to use light energy from the Sun to produce their own food. This process is called photosynthesis!

During photosynthesis plants convert energy from sunlight into energy for food. Photosynthesis also requires water and carbon dioxide. How do they get these two things you ask? Plants can absorb rain water through their roots. They receive carbon dioxide from the air through their leaves. Plants are able to get carbon dioxide from the air that animals, including humans, breath out. So every time you take breath out, you are helping plants get the carbon dioxide they need! The leaves of a plant are able to store the carbon dioxide. 

Where does photosynthesis occur? 

Plants that convert energy from the sun are also called
Photosynthesis happens in the chloroplast.

Plant leaf cells have unique components called chloroplasts. Chloroplasts are filled with a green material called chlorophyll. Have you ever wondered why plants are green? Chlorophyll gives plant leaves their green coloring and allows them to absorb sunlight. When plant cells have water, carbon dioxide and sunlight photosynthesis can occur.

Photosynthesis happens in the chloroplast. The chlorophyll captures light from the Sun.


Plants that convert energy from the sun are also called

During photosynthesis water, carbon dioxide and sunlight come together to form a sugar called glucose, plus water and oxygen. Glucose and water serve as food for the plant. Oxygen is released back into the air for consumption by animals. Take a few deep breaths in... you can thank a plant for that! 

LIGHT AND DARK: WHEN DOES PHOTOSYNTHESIS OCCUR?

Plants that convert energy from the sun are also called

Photosynthesis doesn't just happen all at once. This process can be divided into two parts. Some parts of this chemical reaction can only happen in light, while some happen in the dark. 


Cells get nutrients from their environment, but where do those nutrients come from? Virtually all organic material on Earth has been produced by cells that convert energy from the Sun into energy-containing macromolecules. This process, called photosynthesis, is essential to the global carbon cycle and organisms that conduct photosynthesis represent the lowest level in most food chains (Figure 1).

Plants that convert energy from the sun are also called

Figure 1: Photosynthetic plants synthesize carbon-based energy molecules from the energy in sunlight. Consequently, they provide an abundance of energy for other organisms.

Plants exist in a wide variety of shapes and sizes. (A) Coleochaete orbicularis (Charophyceae) gametophyte; magnification x 75 (photograph courtesy of L. E. Graham). (B) Chara (Charophyceae) gametophyte; magnification x 1.5 (photograph courtesy of M. Feist). (C) Riccia (liverwort) gametophyte showing sporangia (black) embedded in the thallus; magnification x 5 (photograph courtesy of A. N. Drinnan). (D) Anthoceros (hornwort) gametophyte showing unbranched sporophytes; magnification x 2.5 (photograph courtesy of A. N. Drinnan). (E) Mnium (moss) gametophyte showing unbranched sporophytes with terminal sporangia (capsule); magnification x 4.5 (photograph courtesy of W. Burger). (F) Huperzia (clubmoss) sporophyte with leaves showing sessile yellow sporangia; magnification x 0.8. (G) Dicranopteris (fern) sporophyte showing leaves with circinate vernation; magnification x 0.08. (H) Psilotum (whisk fern) sporophyte with reduced leaves and spherical synangia (three fused sporangia); magnification x 0.4. (I) Equisetum (horsetail) sporophyte with whorled branches, reduced leaves, and a terminal cone; magnification x 0.4. (J) Cycas (seed plant) sporophyte showing leaves and terminal cone with seeds; magnification x 0.05 (photograph courtesy of W. Burger).

© 1993 Elsevier Part A: Graham, L. E. Origin of land plants. New York: J. Wiley and Sons, 1993. All rights reserved. Part B: courtesy of M. Feist, University of Montpellier. Parts C and D: courtesy of Andrew Drinnan, Univeristy of Melbourne, School of Botany. Parts E, F and J: Courtesy of William Burger, Field Museum, Chicago.

Plants that convert energy from the sun are also called

What Is Photosynthesis? Why Is it Important?

Most living things depend on photosynthetic cells to manufacture the complex organic molecules they require as a source of energy. Photosynthetic cells are quite diverse and include cells found in green plants, phytoplankton, and cyanobacteria. During the process of photosynthesis, cells use carbon dioxide and energy from the Sun to make sugar molecules and oxygen. These sugar molecules are the basis for more complex molecules made by the photosynthetic cell, such as glucose. Then, via respiration processes, cells use oxygen and glucose to synthesize energy-rich carrier molecules, such as ATP, and carbon dioxide is produced as a waste product. Therefore, the synthesis of glucose and its breakdown by cells are opposing processes.

Plants that convert energy from the sun are also called

Plants that convert energy from the sun are also called

The building and breaking of carbon-based material — from carbon dioxide to complex organic molecules (photosynthesis) then back to carbon dioxide (respiration) — is part of what is commonly called the global carbon cycle. Indeed, the fossil fuels we use to power our world today are the ancient remains of once-living organisms, and they provide a dramatic example of this cycle at work. The carbon cycle would not be possible without photosynthesis, because this process accounts for the "building" portion of the cycle (Figure 2).

However, photosynthesis doesn't just drive the carbon cycle — it also creates the oxygen necessary for respiring organisms. Interestingly, although green plants contribute much of the oxygen in the air we breathe, phytoplankton and cyanobacteria in the world's oceans are thought to produce between one-third and one-half of atmospheric oxygen on Earth.

What Cells and Organelles Are Involved in Photosynthesis?

Plants that convert energy from the sun are also called

Figure 3: Structure of a chloroplast

Photosynthetic cells contain special pigments that absorb light energy. Different pigments respond to different wavelengths of visible light. Chlorophyll, the primary pigment used in photosynthesis, reflects green light and absorbs red and blue light most strongly. In plants, photosynthesis takes place in chloroplasts, which contain the chlorophyll. Chloroplasts are surrounded by a double membrane and contain a third inner membrane, called the thylakoid membrane, that forms long folds within the organelle. In electron micrographs, thylakoid membranes look like stacks of coins, although the compartments they form are connected like a maze of chambers. The green pigment chlorophyll is located within the thylakoid membrane, and the space between the thylakoid and the chloroplast membranes is called the stroma (Figure 3, Figure 4).

Chlorophyll A is the major pigment used in photosynthesis, but there are several types of chlorophyll and numerous other pigments that respond to light, including red, brown, and blue pigments. These other pigments may help channel light energy to chlorophyll A or protect the cell from photo-damage. For example, the photosynthetic protists called dinoflagellates, which are responsible for the "red tides" that often prompt warnings against eating shellfish, contain a variety of light-sensitive pigments, including both chlorophyll and the red pigments responsible for their dramatic coloration.

Plants that convert energy from the sun are also called

Figure 4: Diagram of a chloroplast inside a cell, showing thylakoid stacks

Shown here is a chloroplast inside a cell, with the outer membrane (OE) and inner membrane (IE) labeled. Other features of the cell include the nucleus (N), mitochondrion (M), and plasma membrane (PM). At right and below are microscopic images of thylakoid stacks called grana. Note the relationship between the granal and stromal membranes.

© 2004 Nature Publishing Group Soll, J. & Schleiff, E. Protein import into chloroplasts. Nature Reviews Molecular Cell Biology 5, 198-208 (2004) doi:10.1038/nrm1333. All rights reserved.

Plants that convert energy from the sun are also called

What Are the Steps of Photosynthesis?

Photosynthesis consists of both light-dependent reactions and light-independent reactions. In plants, the so-called "light" reactions occur within the chloroplast thylakoids, where the aforementioned chlorophyll pigments reside. When light energy reaches the pigment molecules, it energizes the electrons within them, and these electrons are shunted to an electron transport chain in the thylakoid membrane. Every step in the electron transport chain then brings each electron to a lower energy state and harnesses its energy by producing ATP and NADPH. Meanwhile, each chlorophyll molecule replaces its lost electron with an electron from water; this process essentially splits water molecules to produce oxygen (Figure 5).

Plants that convert energy from the sun are also called

Figure 5: The light and dark reactions in the chloroplast

The chloroplast is involved in both stages of photosynthesis. The light reactions take place in the thylakoid. There, water (H2O) is oxidized, and oxygen (O2) is released. The electrons that freed from the water are transferred to ATP and NADPH. The dark reactions then occur outside the thylakoid. In these reactions, the energy from ATP and NADPH is used to fix carbon dioxide (CO2). The products of this reaction are sugar molecules and various other organic molecules necessary for cell function and metabolism. Note that the dark reaction takes place in the stroma (the aqueous fluid surrounding the stacks of thylakoids) and in the cytoplasm.

Once the light reactions have occurred, the light-independent or "dark" reactions take place in the chloroplast stroma. During this process, also known as carbon fixation, energy from the ATP and NADPH molecules generated by the light reactions drives a chemical pathway that uses the carbon in carbon dioxide (from the atmosphere) to build a three-carbon sugar called glyceraldehyde-3-phosphate (G3P). Cells then use G3P to build a wide variety of other sugars (such as glucose) and organic molecules. Many of these interconversions occur outside the chloroplast, following the transport of G3P from the stroma. The products of these reactions are then transported to other parts of the cell, including the mitochondria, where they are broken down to make more energy carrier molecules to satisfy the metabolic demands of the cell. In plants, some sugar molecules are stored as sucrose or starch.

Conclusion

Photosynthetic cells contain chlorophyll and other light-sensitive pigments that capture solar energy. In the presence of carbon dioxide, such cells are able to convert this solar energy into energy-rich organic molecules, such as glucose. These cells not only drive the global carbon cycle, but they also produce much of the oxygen present in atmosphere of the Earth. Essentially, nonphotosynthetic cells use the products of photosynthesis to do the opposite of photosynthesis: break down glucose and release carbon dioxide.